首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu T  Guo S  Wang J  Li L  Xu L  Liu P  Ma S  Zhang J  Xu L  Luo Y 《Cellular immunology》2011,272(1):94-101
The aim of the study was to investigate the interaction between manLAM and DC-SIGN influencing DCs maturation and downstream immune response using small interfering RNA-expressing lentiviral vectors to specifically knockdown DC-SIGN. Our data indicated that DC-SIGN knockdown alone in DCs did not affect the maturation or the immunological function of lipopolysacharide (LPS)-activated DCs. Surface molecules were dramatically down-regulated in DCs primed with manLAM but not in mock control DCs (P < 0.05). Meanwhile, manLAM enhanced the production of the immunosuppressive cytokine IL-10 in DCs (P < 0.05). The level of IFN-γ was significantly down-regulated in the supernatants of naive T cells after co-cultured with DCs primed with manLAM (P < 0.05). We demonstrated that DCs primed with manLAM may partially impair maturation phenotypes and immune response in LPS-activated DCs. However, the alterations of DCs function and downstream immune response caused by manLAM were reversed by the knockdown of DC-SIGN.  相似文献   

2.
Natural killer (NK) cells are critical in eliminating tumors and viral infections, both of which occur at a high incidence in the elderly. Previous studies showed that aged NK cells are less cytotoxic and exhibit impaired maturation compared to young NK cells. We evaluated whether extrinsic or intrinsic factors were responsible for the impaired maturation and function of NK cells in aging and whether impaired maturation correlated with functional hyporesponsiveness. We confirmed that aged mice have a significant decrease in the frequency of mature NK cells in all lymphoid organs. Impaired NK cell maturation in aged mice correlated with a reduced capacity to eliminate allogeneic and B16 tumor targets in vivo. This could be explained by impaired degranulation, particularly by mature NK cells of aged mice. Consistent with impaired aged NK cell maturation, expression of T‐bet and Eomes, which regulate NK cell functional maturation, was significantly decreased in aged bone marrow (BM) NK cells. Mixed BM chimeras revealed that the nonhematopoietic environment was a key determinant of NK cell maturation and T‐bet and Eomes expression. In mixed BM chimeras, NK cells derived from both young or aged BM cells adopted an ‘aged’ phenotype in an aged host, that is, were hyporesponsive to stimuli in vitro, while adopting a ‘young’ phenotype following transfer in young hosts. Overall, our data suggest that the aged nonhematopoietic environment is responsible for the impaired maturation and function of NK cells. Defining these nonhematopoietic factors could have important implications for improving NK cell function in the elderly.  相似文献   

3.
4.
Sickness behavior is a taxonomically widespread coordinated set of behavioral changes that increases shelter‐seeking while reducing levels of general activity, as well as food (anorexia) and water (adipsia) consumption, when fighting infection by pathogens and disease. The leading hypothesis explaining such sickness‐related shifts in behavior is the energy conservation hypothesis. This hypothesis argues that sick (i.e., immune‐challenged) animals reduce energetic expenditure in order have more energy to fuel an immune response, which in some vertebrates, also includes producing an energetically expensive physiological fever. We experimentally tested the hypothesis that an immune challenge with lipopolysaccharide (LPS) will cause Gryllus firmus field crickets to reduce their activity, increase shelter use and avoid foods that interfere with an immune response (i.e., fat) while preferring a diet that fuels an immune response (i.e., protein). We found little evidence of sickness behavior in Gryllus firmus as immune‐challenged individuals did not reduce their activity or increase their shelter‐seeking. Neither did we observe changes in feeding or drinking behavior nor a preference for protein or avoidance of lipids. Males tended to use shelters less than females but no other behaviors differed between the sexes. The lack of sickness behavior in our study might reflect the fact that invertebrates do not possess energetically expensive physiological fever as part of their immune response. Therefore, there is little reason to conserve energy via reduced activity or increased shelter use when immune‐challenged.  相似文献   

5.
Cathelicidins are antimicrobial peptides of the innate immune system that establish an antimicrobial barrier at epithelial interfaces and have been proposed to have a proinflammatory function. We studied the role of cathelicidin in allergic contact dermatitis, a model requiring dendritic cells of the innate immune response and T cells of the adaptive immune response. Deletion of the murine cathelicidin gene Cnlp enhanced an allergic contact response, whereas local administration of cathelicidin before sensitization inhibited the allergic response. Cathelicidins inhibited TLR4 but not TLR2 mediated induction of dendritic cell maturation and cytokine release, and this inhibition was associated with an alteration of cell membrane function and structure. Further analysis in vivo connected these observations because inhibition of sensitization by exogenous cathelicidin was dependent on the presence of functional TLR4. These observations provide evidence that cathelicidin antimicrobial peptides mediate an anti-inflammatory response in part by their activity at the membrane.  相似文献   

6.
Phagocytosis of invading microorganisms by specialized cells such as macrophages and neutrophils is a key component of the innate immune response. These cells capture and engulf pathogens and subsequently destroy them in intracellular vacuoles—the phagosomes. Pathogen phagocytosis and progression and maturation of pathogen-containing phagosomes, a crucial event to acquire microbicidal features, occurs in parallel with accentuated formation of lipid-rich organelles, termed lipid bodies (LBs), or lipid droplets. Experimental and clinical infections with different pathogens such as bacteria, parasites, and viruses induce LB accumulation in cells from the immune system. Within these cells, LBs synthesize and store inflammatory mediators and are considered structural markers of inflammation. In addition to LB accumulation, interaction of these organelles with pathogen-containing phagosomes has increasingly been recognized in response to infections and may have implications in the outcome or survival of the microorganism within host cells. In this review, we summarize our current knowledge on the LB-phagosome interaction within cells from the immune system, with emphasis on macrophages, and discuss the functional meaning of this event during infectious diseases.  相似文献   

7.
Both physiological and pathological situations can result in biochemical changes of low-density lipoproteins (LDL). Because they can deliver signals to dendritic cells (DC), these modified lipoproteins now appear as regulators of the immune response. Among these modified lipoproteins, oxidized LDL (oxLDL) that accumulate during inflammatory conditions have been extensively studied. Numerous studies have shown that oxLDL induce the maturation of DC, enhancing their ability to activate IFNγ secretion by T cells. LDL treated by secreted phospholipase A2 also promote DC maturation. Among the bioactive lipids generated by oxidation or phospholipase treatment of LDL, lysophosphatidylcholine (LPC) and some saturated fatty acids induce DC maturation whereas some unsaturated fatty acids or oxidized derivatives have opposite effects. Among other factors, the nuclear receptor peroxisome-proliferator activated receptor γ (PPARγ) plays a crucial role in this regulation. Non-modified lipoproteins also contribute to the regulation of DC function, suggesting that the balance between native and modified lipoproteins, as well as the biochemical nature of the LDL modifications, can regulate the activation threshold of DC. Here we discuss two pathological situations in which the impact of LDL modifications on inflammation and immunity could play an important role. During atherosclerosis, modified LDL accumulating in the arterial intima may interfere with DC maturation and function, promoting a Th1 immune response and a local inflammation favoring the development of the pathology. In patients chronically infected, the hepatitis C virus (HCV) interferes with lipoprotein metabolism resulting in the production of infectious modified lipoproteins. These lipo-viral-particles (LVP) are modified low-density lipoproteins containing viral material that can alter DC maturation and affect specific toll-like receptor signaling. In conclusion, lipoprotein modifications play an important role in the regulation of immunity by delivering signals of danger to DC and modulating their function.  相似文献   

8.
Infection with Neisseria gonorrhoeae (N. gonorrhoeae) can trigger an intense local inflammatory response at the site of infection, yet there is little specific immune response or development of immune memory. Gonococcal surface epitopes are known to undergo antigenic variation; however, this is unlikely to explain the weak immune response to infection since individuals can be re-infected by the same serotype. Previous studies have demonstrated that the colony opacity-associated (Opa) proteins on the N. gonorrhoeae surface can bind human carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) on CD4+ T cells to suppress T cell activation and proliferation. Interesting in this regard, N. gonorrhoeae infection is associated with impaired HIV-1 (human immunodeficiency virus type 1)-specific cytotoxic T-lymphocyte (CTL) responses and with transient increases in plasma viremia in HIV-1-infected patients, suggesting that N. gonorrhoeae may also subvert immune responses to co-pathogens. Since dendritic cells (DCs) are professional antigen presenting cells (APCs) that play a key role in the induction of an adaptive immune response, we investigated the effects of N. gonorrhoeae Opa proteins on human DC activation and function. While morphological changes reminiscent of DC maturation were evident upon N. gonorrhoeae infection, we observed a marked downregulation of DC maturation marker CD83 when the gonococci expressing CEACAM1-specific OpaCEA, but not other Opa variants. Consistent with a gonococcal-induced defect in maturation, OpaCEA binding to CEACAM1 reduced the DCs’ capacity to stimulate an allogeneic T cell proliferative response. Moreover, OpaCEA-expressing N. gonorrhoeae showed the potential to impair DC-dependent development of specific adaptive immunity, since infection with OpaCEA-positive gonococci suppressed the ability of DCs to stimulate HIV-1-specific memory CTL responses. These results reveal a novel mechanism to explain why infection of N. gonorrhoeae fails to trigger an effective specific immune response or develop immune memory, and may affect the potent synergy between gonorrhea and HIV-1 infection.  相似文献   

9.
Floral nectary development and nectar secretion in three species of Passiflora were investigated with light and electron microscopy. The nectary ring results from the activity of an intercalary meristem. Increased starch deposition in the amyloplasts of the secretory cells parallels maturation of the nectary phloem. Large membrane-bound protein bodies are observed consistently in phloem parenchyma cells, but their function is presently unknown. The stored starch serves as the main source of nectar sugars at anthesis. Plastid envelope integrity is maintained during starch degradation, and there is no evidence of participation of endoplasmic reticulum or Golgi in the secretion of pre-nectar. It is concluded that in these starchy nectaries granulocrine secretion, commonly reported for floral nectaries, does not occur.  相似文献   

10.
Natural killer (NK) cells are an innate lymphoid cell lineage characterized by their capacity to provide rapid effector functions, including cytokine production and cytotoxicity. Here, we identify the Ikaros family member, Aiolos, as a regulator of NK-cell maturation. Aiolos expression is initiated at the point of lineage commitment and maintained throughout NK-cell ontogeny. Analysis of cell surface markers representative of distinct stages of peripheral NK-cell maturation revealed that Aiolos was required for the maturation in the spleen of CD11bhighCD27 NK cells. The differentiation block was intrinsic to the NK-cell lineage and resembled that found in mice lacking either T-bet or Blimp1; however, genetic analysis revealed that Aiolos acted independently of all other known regulators of NK-cell differentiation. NK cells lacking Aiolos were strongly hyper-reactive to a variety of NK-cell-mediated tumor models, yet impaired in controlling viral infection, suggesting a regulatory function for CD27 NK cells in balancing these two arms of the immune response. These data place Aiolos in the emerging gene regulatory network controlling NK-cell maturation and function.  相似文献   

11.
In insects, the cell-mediated immune response involves an active role of hemocytes in phagocytosis, nodulation, and encapsulation. Although these processes have been well documented in multiple species belonging to different insect orders, information concerning the immune response, particularly the hemocyte types and their specific function in the black soldier fly Hermetia illucens, is still limited. This is a serious gap in knowledge given the high economic relevance of H. illucens larvae in waste management strategies and considering that the saprophagous feeding habits of this dipteran species have likely shaped its immune system to efficiently respond to infections. The present study represents the first detailed characterization of black soldier fly hemocytes and provides new insights into the cell-mediated immune response of this insect. In particular, in addition to prohemocytes, we identified five hemocyte types that mount the immune response in the larva, and analyzed their behavior, role, and morphofunctional changes in response to bacterial infection and injection of chromatographic beads. Our results demonstrate that the circulating phagocytes in black soldier fly larvae are plasmatocytes. These cells also take part in nodulation and encapsulation with granulocytes and lamellocyte-like cells, developing a starting core for nodule/capsule formation to remove/encapsulate large bacterial aggregates/pathogens from the hemolymph, respectively. These processes are supported by the release of melanin precursors from crystal cells and likely by mobilizing nutrient reserves in newly circulating adipohemocytes, which could thus trophically support other hemocytes during the immune response. Finally, the regulation of the cell-mediated immune response by eicosanoids was investigated.  相似文献   

12.
Gigley JP  Khan IA 《PloS one》2011,6(6):e20838
Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations.  相似文献   

13.
Rutkowska J  Martyka R  Arct A  Cichoń M 《Oecologia》2012,168(2):355-359
The immune system is an important player in individual trade-offs, but what has rarely been explored is how different strategies of investment in immune response may affect reproductive decisions. We examined the relationship between the strength of maternal immune response and offspring viability and immune response in captive zebra finches Taeniopygia guttata. In three independent experiments, the females and subsequently their adult offspring were challenged with sheep red blood cells, and their responses were measured. There was no relationship between offspring immune response and that of their mothers. However, we found offspring survival until adulthood to be negatively related to maternal antibody titers. That effect was consistent among all experiments and apparent despite the fact that we partially cross-fostered newly hatched nestlings between nests of different females. This suggests that the observed effects of maternal immune response is not mediated by potentially altered female rearing abilities. To our knowledge, this is the first study showing the relationship between the strength of the immune response and between-generational fitness costs in birds.  相似文献   

14.
The neutrophil‐specific innate immune receptor CEACAM3 functions as a decoy to capture Gram‐negative pathogens, such as Neisseria gonorrhoeae, that exploit CEACAM family members to adhere to the epithelium. Bacterial binding to CEACAM3 results in their efficient engulfment and triggers activation of an nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB)‐dependent inflammatory response by human neutrophils. Herein, we report that CEACAM3 cross‐linking is not sufficient for induction of cytokine production and show that the inflammatory response induced by Neisseria gonorrhoeae infection is elicited by an integration of signals from CEACAM3 and toll‐like receptors. Using neutrophils from a human CEACAM‐expressing mouse line (CEABAC), we use a genetic approach to reveal a molecular bifurcation of the CEACAM3‐mediated antimicrobial and inflammatory responses. Ex vivo experiments with CEABAC‐Rac2?/?, CEABAC‐Bcl10?/?, and CEABAC‐Malt1?/? neutrophils indicate that these effectors are not necessary for gonococcal engulfment, yet all 3 effectors contribute to CEACAM3‐mediated cytokine production. Interestingly, although Bcl10 and Malt1 are often inextricably linked, Bcl10 enabled synergy between toll‐like receptor 4 and CEACAM3, whereas Malt1 did not. Together, these findings reveal an integration of the specific innate immune receptor CEACAM3 into the network of more conventional pattern recognition receptors, providing a mechanism by which the innate immune system can unleash its response to a relentless pathogen.  相似文献   

15.
The initiation of an immune response requires that professional antigen-presenting cells, such as dendritic cells, physically interact with antigen-specific T cells within the complex environment of the lymph node. Although the way in which antigen is presented to T cells and in particular the cellular associations involved in antigen-specific stimulation events have been extensively investigated, data on antigen presentation have come primarily from studies in vitro or examination of the late consequences of antigen presentation in vivo. However, there is increasing recognition that events defined in vitro might not correspond entirely to the physiological situation in vivo. Recent developments in imaging technology now allow real-time observation of single-cell and molecular interactions in intact lymphoid tissues and have already contributed to a more detailed picture of how cells coordinate the initiation or suppression of an immune response.  相似文献   

16.
Background: Helicobacter pylori infection can lead to the development of gastritis, peptic ulcers and gastric cancer, which makes this bacterium an important concern for human health. Despite evoking a strong immune response in the host, H. pylori persists, requiring complex antibiotic therapy for eradication. Here we have studied the impact of a patient’s immune serum on H. pylori in relation to macrophage uptake, phagosome maturation, and bacterial killing. Materials and Methods: Primary human macrophages were infected in vitro with both immune serum‐treated and control H. pylori. The ability of primary human macrophages to kill H. pylori was characterized at various time points after infection. H. pylori phagosome maturation was analyzed by confocal immune fluorescence microscopy using markers specific for H. pylori, early endosomes (EEA1), late endosomes (CD63) and lysosomes (LAMP‐1). Results: Immune serum enhanced H. pylori uptake into macrophages when compared to control bacteria. However, a sufficient inoculum remained for recovery of viable H. pylori from macrophages, at 8 hours after infection, for both the serum‐treated and control groups. Both serum‐treated and control H. pylori phagosomes acquired EEA1 (15 minutes), CD63 and LAMP‐1 (30 minutes). These markers were then retained for the rest of an 8 hour time course. Conclusions: While immune sera appeared to have a slight positive effect on bacterial uptake, both serum‐treated and control H. pylori were not eliminated by macrophages. Furthermore, the same disruptions to phagosome maturation were observed for both serum‐treated and control H. pylori. We conclude that to eliminate H. pylori, a strategy is required to restore the normal process of phagosome maturation and enable effective macrophage killing of H. pylori, following a host immune response.  相似文献   

17.
The success of a robust vertebrate inflammatory response is in part because of the migratory potential of its haematopoietic components. Once these cells converge at an inflammatory site, they interact with each other as well as non‐immune tissues and infectious agents to help manage both the scale and the duration of any ensuing response. Exactly how these blood cells, that constitute the innate and adaptive immune systems, contribute to such immune responses remain largely unknown. Traditionally, assessing these contributions relied upon histological analysis of fixed tissue sections complemented with in vitro dynamic data. Although informative, translating results from these studies into the multicellular whole‐animal setting remain difficult. Recently, non‐invasive live imaging of the immune system in animal models is providing significant insights into how immune cells function within their intact natural environment. Although the majority of these studies have been conducted within mice, another vertebrate, the zebrafish Danio rerio is being recognized as an ideal platform for non‐invasive live imaging applications. The optical transparency, rapid development, genetic tractability and highly conserved innate and adaptive immune systems of this well‐established developmental model have been exploited in a number of recent studies evaluating the immunocompetence of fluorescently tagged blood cells. In addition, similar live imaging studies are helping to dissect the ontogeny of blood‐cell development by tracking various haematopoietic precursor cells to assess their contribution to different blood lineages. This review will examine some recent advances that have helped D. rerio emerge as a live imaging platform as well as its potential to offer valuable insights into the genetics behind diseases associated with immune cell dysfunction.  相似文献   

18.
Tuberculosis remains the single largest infectious disease with 10 million new cases and two million deaths that are estimated to occur yearly, more than any time in history. The intracellular replication of Mycobacterium tuberculosis (Mtb) and its spread from the lungs to other sites occur before the development of adaptive immune responses. Dendritic cells (DC) are professional antigen‐presenting cells whose maturation is critical for the onset of the protective immune response against tuberculosis disease and may vary depending on the nature of the cell wall of Mtb strain. Here, we describe the role of the endogenous production of reactive oxygen species (ROS) on DC maturation and expansion of Mtb‐specific lymphocytes. Here, we show that Mtb induces DC maturation through TLR2/dectin‐1 by generating of ROS and through Dendritic Cell‐Specific Intercellular adhesion molecule‐3‐Grabbing Non‐integrin (DC‐SIGN) in a ROS independently manner. Based on the differences observed in the ability to induce DC maturation, ROS production and lymphocyte proliferation by those Mtb families widespread in South America, i.e., Haarlem and Latin American Mediterranean and the reference strain H37Rv, we propose that variance in ROS production might contribute to immune evasion affecting DC maturation and antigen presentation.  相似文献   

19.
Ectoparasites repress host immune responses while they obtain nutrition from their hosts. Understanding the immunosuppressive mechanisms between ectoparasites and their hosts will provide new strategies to develop potential immunosuppressive drugs against immune disorder diseases. Previously, we have discovered that a small peptide, immunoregulin HA, from the horsefly (Hybomitra atriperoides) may play an immunosuppressive role in rat splenocytes. However, the targeting cells and detailed mechanisms of immunoregulin HA in immunosuppressive reactions are not well defined. Here, we show that immunoregulin HA reduces the secretion of proinflammatory cytokines upon lipopolysaccharide (LPS) stimulation. Interestingly, we discover that the major cytokines repressed by immunoregulin HA are secreted by macrophages, rather than by T cells. Furthermore, immunoregulin HA inhibits macrophage maturation and phagocytosis. Mechanically, the activations of c-JUN N-terminal kinase and extracellular signal-regulated kinase upon LPS stimulation are decreased by immunoregulin HA. Consistently, immunoregulin HA treatment exhibits an anti-inflammatory activity in a mouse model of adjuvant-induced paw inflammation. Taken together, our data reveal that immunoregulin HA conducts the anti-inflammatory activity by blocking macrophage functions.  相似文献   

20.
TheH-2 gene region is shown to display a considerable influence upon the age-specific response to T- and B-cell mitogens in congenic mice. Three sets of three strains each were studied, including mice congenic on A, C3H, and C57BL backgrounds. The sometimes rather striking differences in mitogenic responsiveness upon any one background were generally much less apparent in young mice than in mice examined at later stages in their lifespans, up to 28 to 30 months in the present investigation. Prior studies which failed to detect an effect ofH-2 upon mitogenic responsiveness have been limited to relatively young mice. We suggest thatH-2-linked genes may influence the maturation rates of various types of immune response, or perhaps the status of differentiation receptor sites. Different types of response may mature, peak, and decline at different ages and underH-2 contributory influence. The age-specific incidence of or susceptibility to certain diseases may in part reflect such diverse rates of change or balance among immune functions. The known associations of theH-2 andHLA systems with various malignancies and autoimmune diseases are not inconsistent with this possibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号