首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like effects of glucagon-like peptide-1(7-36)amide (GLP-1) in rat liver, skeletal muscle and fat, and also the presence of GLP-1 receptors in these extrapancreatic tissues, have been documented. In skeletal muscle and liver, the action of GLP-1 is not associated with an activation of adenylate cyclase, and in cultured murine myocytes and hepatoma cell lines, it was found that GLP-1 provokes the generation of inositolphosphoglycan molecules (IPGs), which are considered second messengers of insulin action. In the present work, we document in isolated normal rat adipocytes and hepatocytes that GLP-1 exerts a rapid decrease of the radiolabelled glycosylphosphatidylinositols (GPIs)—precursors of IPGs—in the same manner as insulin, indicating their hydrolysis and the immediate short-lived generation of IPGs. Thus, IPGs could be mediators in the GLP-1 actions in adipose tissue and liver, as well as in skeletal muscle, through GLP-1 receptors which are, at least functionally, different from that of the pancreatic B-cell. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Glucagon-like peptide 1 (7-36) amide (GLP-1) and exendin-4 are gastrointestinal hormones as well as neuropeptides involved in glucose homeostasis and feeding regulation, both peripherally and at the central nervous system (CNS), acting through the same GLP-1 receptor. Aminergic neurotransmitters play a role in the modulation of feeding in the hypothalamus and we have previously found that peripheral hormones and neuropeptides, which are known to modulate feeding in the central nervous system, are able to modify catecholamine and serotonin release in the hypothalamus. In the present paper we have evaluated the effects of GLP-1 and exendin-4 on dopamine, norepinephrine, and serotonin release from rat hypothalamic synaptosomes, in vitro. We found that glucagon-like peptide 1 (7-36) amide and exendin-4 did not modify either basal or depolarization-induced dopamine and norepinephrine release; on the other hand glucagon-like peptide 1 (7-36) amide and exendin-4 stimulated serotonin release, in a dose dependent manner. We can conclude that the central anorectic effects of GLP-1 agonists could be partially mediated by increased serotonin release in the hypothalamus, leaving the catecholamine release unaffected.  相似文献   

3.
Objective: Glucagon‐like peptide‐1 (GLP‐1) (7–36) amide is a glucoregulatory hormone with insulinotropic and insulinomimetic actions. We determined whether the insulinomimetic effects of GLP‐1 are mediated through its principal metabolite, GLP‐1 (9–36) amide (GLP‐1m). Methods and Procedures: Glucose turnover during two, 2‐h, euglycemic clamps was measured in 12 lean and 12 obese (BMI <25 or >30 kg/m2) male and female subject volunteers with normal oral glucose tolerance test. Saline or GLP‐1m were infused from 0 to 60 min in each study. Additionally, seven lean and six obese subjects underwent a third clamp in which the GLP‐1 receptor (GLP‐1R) antagonist, exendin (9–39) amide was infused from ?60 to 60 min with GLP‐1m from 0 to 60 min. Results: No glucose infusion was required in lean subjects to sustain euglycemia (glucose clamp) during saline or GLP‐1m infusions. However, in obese subjects glucose infusion was necessary during GLP‐1m infusion alone in order to compensate for a marked (>50%) inhibition of hepatic glucose production (HGP). Plasma insulin levels remained constant in lean subjects but rose significantly in obese subjects after termination of the peptide infusions. During GLP‐1R blockade, infusion of glucose was immediately required upon starting GLP‐1m infusions in all subjects due to a more dramatic reduction in HGP, as well as a delayed and modest insulinotropic response. Discussion: We conclude that GLP‐1m potently inhibits HGP and is a weak insulinotropic agent. These properties are particularly apparent and pronounced in obese but only become apparent in lean subjects during GLP‐1 (7–36) receptor blockade. These previously unrecognized antidiabetogenic actions of GLP‐1m may have therapeutic usefulness.  相似文献   

4.
目的:研究下丘脑室旁核(paraventricular nucleus,PVN)注射胰高血糖素样肽-1(GLP-1)对糖尿病早期大鼠胃排空的影响,并探讨其相关作用机制.方法:60只清洁级雄性Wistar大鼠随机分为正常对照组(NC组),糖尿病组(DM组),GLP-1干预组(GLP-1组),每组各20只,后两组腹腔注射链脲佐菌素(STZ)制备糖尿病模型,分别于注射STZ2周、6周后每组随机取半数进行实验,实验前于无菌条件下大鼠一侧下丘脑PVN区埋置套管,GLP-1组经套管注入GLP-1,NC组及DM组注入等体积生理盐水.酚红灌胃法检测胃排空率,酶联免疫吸附法(ELISA)测定血浆GLP-1浓度,半定量RT-PCR法测定胃窦、胃底GLP-1RmRNA表达.结果:注射STZ2周后,DM组较NC组胃排空率显著升高(P<0.01).GLP-1组胃排空率低于DM组(P<0.01),血浆GLP-1浓度高于DM组及NC组(P均<0.05),胃窦GLP-1RmRNA表达明显高于DM组、NC组(P均<0.01).注射STZ 6周后,DM组胃排空率高于NC组(P<0.01).GLP-1组较DM组胃排空率显著降低(P<0.01),血浆GLP-1浓度、胃窦GLP-1RmRNA表达显著高于DM组、NC组(P均<0.01).结论:下丘脑PVN区注射GLP-1后,可减慢糖尿病大鼠初期加速的胃排空,原因可能与血浆GLP-1浓度及胃窦GLP-1RmRNA表达增加有关.  相似文献   

5.
Recent evidence suggests that insulin induces hydrolysis of phosphatidylinositol-glycan (PI-G) and releases inositol-glycan (IG) and diacylglycerol (DAG). These two mediators are speculated to mediate different insulin actions. In this study, we examined metabolic labeling of PI-G in BC3H-1 myocytes with known precursors of PI-G. PI-G was metabolically labeled with [3H]myo-inositol, [3H]glucosamine, [3H]galactose, [3H]glycerol, and [3H]myristic acid. The treatment of 3H-labeled PI-G with phosphatidylinositol-specific phospholipase C liberated [3H]myo-inositol, [3H]glucosamine, or [3H]galactosamine-labeled IgGs, and [3H]glycerol or [3H]myristic acid-labeled DAG. In BC3H-1 myocytes, insulin induced phosphodiesteratic hydrolysis of PI-G and stimulated generation of IGs and DAG. Released IGs were labeled with [3H]myo-inositol, [3H]glucosamine, and [3H]galactose. Released DAG was labeled with [3H] glycerol and [3H]myristic acid. The IG had a dose-dependent insulin-like activity on glucose oxidation and lipogenesis without affecting glucose transport in rat adipocytes. Insulin increased 3H radioactivities of IG and insulin-mimicking activities of IG. These results provided further evidence that hydrolysis of PI-G and generation of IGs and DAG might be early steps in some insulin actions.  相似文献   

6.
R G?ke  B Oltmer  S P Sheikh  B G?ke 《FEBS letters》1992,300(3):232-236
Glucagon-like peptide-1 (7–36)amide (GLP-1 (7–36)amide) represents a physiologically important incretin in mammals including man. Receptors for GLP-1 (7–36)amide have been described in RINm5F cells. We have solubilized active GLP-1 (7–36)amide receptors from RINm5F cell membranes utilizing the detergents octyl-β-glucoside and CHAPS; Triton X-100 and Lubrol PX were ineffective. Binding of radiolabeled GLP-1(7–36)amide to the solubilized receptor was inhibited conentration-dependently by addition of unlabeled peptide. Scatchard analysis of binding data revealed a single class of binding sites with Ka= 0.26 ± 0.03 nM and Bmax= 65.4 ± 21.24 fmol/mg of protein for the membrane-bound receptor and Ka= 22.54 ± 4.42 μM and Bmax= 3.9 ± 0.79 pmol/mg of protein for the solubilized receptor. The binding of the radiolabel to the solubilized receptor was dependent both on the concentrations of mono- and divalent cations and the protein/detergent ratio in the incubation buffer. The membrane bound receptor is sensitive to guanine-nucleotides, however neither GTP-γ-S nor GDP-β-S affected binding or labeled peptide to solubilized receptor. These data indicate that the solubilized receptor may have lost association with its G-protein. In conclusion, the here presented protocol allows solubilization of the GLP-1(7–36)amide receptor in a functional state and opens up the possibility for further molecular characterization of the receptor protein.  相似文献   

7.
8.
We have previously demonstrated that insulin stimulates glycerolipid synthesis and phospholipid hydrolysis in BC3H-1 myocytes, resulting in the generation of membrane diacylglycerol, a known cellular mediator. This led us to the original proposal that diacylglycerol may contribute to the mediation of insulin action, especially stimulation of glucose transport. The fact that agents such as phenylephrine and phorbol esters, which increase or act as membrane diacylglycerols, are fully active in stimulating glucose transport in this tissue lent further support to this proposal. In this paper, we demonstrate that the diacylglycerol analogues PMA (4 beta-phorbol 12-myristate 13-acetate) and mezerein (both possessing 12 beta- and 13 alpha-O-linked substituents as well as a 4 beta-hydroxyl group) each increase the Vmax of the glucose transporter as does insulin. Diacylglycerol generated by the addition of phospholipase C also stimulates glucose uptake to a maximum which is equal and nonadditive to that of insulin, while addition of the narrowly active phosphatidylinositol-specific phospholipase C which generates the putative phosphoinositol-glycan mediator of Saltiel et al. (Saltiel, A., Fox, J., She Lin, P., and Cutrecasas, P. (1986) Science 233, 967-972) stimulates pyruvate dehydrogenase in these cells without any effect on glucose uptake. Pretreatment of the myocytes with PMA resulted in desensitization of subsequent glucose uptake to stimulation by phenylephrine, but had no effect on stimulation of glucose uptake by phospholipase C or by insulin, indicating that PMA pretreatment primarily desensitizes agonist-induced polyphosphoinositide hydrolysis which, as we have previously shown, is not involved in the insulin-induced generation of diacylglycerol. This was confirmed by the absence of intracellular Ca2+ mobilization during insulin administration, as measured by the sensitive fluorescent probe fura-2 in attached monolayer BC3H-1 myocytes. Furthermore, we have shown that insulin-generated diacylglycerol satisfies several criteria for a mediator of insulin action, including the demonstration that insulin-stimulated endogenous diacylglycerol generation is antecedent to glucose transport and has an identical insulin dose-response curve and moreover that the magnitude and time course of subsequent stimulation of glucose transport is reproduced by the addition of the simple exogenous diacylglyerol, dioctanoylglycerol, in the complete absence of the hormone. These results establish a central role for insulin-induced glycerolipid metabolism in mediating insulin-stimulated glucose transport in BC3H-1 myocytes.  相似文献   

9.
The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter β-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide.  相似文献   

10.
The expression of glucagon-like peptide-1 (GLP-1) receptor and the effects of GLP-1-(7-36) amide (t-GLP-1) on glucose metabolism and insulin release by pancreatic islets during rat development were studied. GLP-1 receptor mRNA was found in significant amounts in pancreatic islets from all age groups studied, GLP-1 receptor expression being maximal when pancreatic islets were incubated at physiological glucose concentration (5.5 mM), but decreasing significantly when incubated with either 1.67 or 16.7 mM glucose. Glucose utilization and oxidation by pancreatic islets from fetal and adult rats rose as a function of glucose concentration, always being higher in fetal than in adult islets. The addition of t-GLP-1 to the incubation medium did not modify glucose metabolism but gastric inhibitory polypeptide and glucagon significantly increased glucose utilization by fetal and adult pancreatic islets at 16.7 mM glucose. At this concentration, glucose produced a significant increase in insulin release by the pancreatic islets from 10-day-old and 20-day-old suckling rats and adult rats, whereas those from fetuses showed only a significant increase when glucose was raised from 1.67 to 5.5 mM. t-GLP-1 elicited an increase in insulin release by pancreatic islets from all the experimental groups when the higher glucose concentrations were used. Our findings indicate that GLP-1 receptors and the effect of t-GLP-1 on insulin release are already present in the fetus, and they therefore exclude the possibility that alterations in the action of t-GLP-1 are responsible for the unresponsiveness of pancreatic beta cells to glucose in the fetus, but stimulation of t-GLP-1 release by food ingestion in newborns may partially confer glucose competence on beta cells.  相似文献   

11.
The urinary excretion of insulinotropic glucagon-like peptide 1 (GLP-1) was investigated as an indicator of renal tubular integrity in 10 healthy subjects and in 3 groups of type 2 diabetic patients with different degrees of urinary albumin excretion rate. No significant difference emerged between the groups with respect to age of the patients, known duration of diabetes, metabolic control, BMI, or residual beta-cell pancreatic function. Endogenous creatinine clearance was significantly reduced under conditions of overt diabetic nephropathy, compared with normo and microalbuminuric patients (p < 0.01). Urinary excretion of GLP-1 was significantly higher in normoalbuminuric patients compared to controls (490.4 +/- 211.5 vs. 275.5 +/- 132.1 pg/min; p < 0.05), with further increase under incipient diabetic nephropathy conditions (648.6 +/- 305 pg/min; p < 0.01). No significant difference resulted, in contrast, between macroproteinuric patients and non-diabetic subjects. Taking all patients examined into account, a significant positive relationship emerged between urinary GLP-1 and creatinine clearance (p = 0.004). In conclusion, an early tubular impairment in type 2 diabetes would occur before the onset of glomerular permeability alterations. The tubular dysfunction seems to evolve with the development of persistent microalbuminuria. Finally, the advanced tubular involvement, in terms of urinary GLP1 excretion, under overt diabetic nephropathy conditions would be masked by severe concomitant glomerular damage with the coexistence of both alterations resulting in a peptide excretion similar to control subjects.  相似文献   

12.
Type 2 diabetes mellitus (T2DM) is closely associated with cardiovascular diseases (CVD), including atherosclerosis, hypertension and heart failure. Some anti-diabetic medications are linked with an increased risk of weight gain or hypoglycemia which may reduce the efficacy of the intended anti-hyperglycemic effects of these therapies. The recently developed receptor agonists for glucagon-like peptide-1 (GLP-1RAs), stimulate insulin secretion and reduce glycated hemoglobin levels without having side effects such as weight gain and hypoglycemia. In addition, GLP1-RAs demonstrate numerous cardiovascular protective effects in subjects with or without diabetes. There have been several cardiovascular outcomes trials (CVOTs) involving GLP-1RAs, which have supported the overall cardiovascular benefits of these drugs. GLP1-RAs lower plasma lipid levels and lower blood pressure (BP), both of which contribute to a reduction of atherosclerosis and reduced CVD. GLP-1R is expressed in multiple cardiovascular cell types such as monocyte/macrophages, smooth muscle cells, endothelial cells, and cardiomyocytes. Recent studies have indicated that the protective properties against endothelial dysfunction, anti-inflammatory effects on macrophages and the anti-proliferative action on smooth muscle cells may contribute to atheroprotection through GLP-1R signaling. In the present review, we describe the cardiovascular effects and underlying molecular mechanisms of action of GLP-1RAs in CVOTs, animal models and cultured cells, and address how these findings have transformed our understanding of the pharmacotherapy of T2DM and the prevention of CVD.  相似文献   

13.
Insulin was found to provoke simultaneous, rapid, biphasic increases in [3H]choline-labeling of phosphatidylcholine and phosphocholine in BC3H-1 myocytes. Phorbol esters increased [3H]choline-labeling of phosphocholine, but not phosphatidylcholine. Both agonists increased diacylglycerol production. These results suggest that: (a) insulin provokes coordinated increases in the synthesis and hydrolysis of PC; and, (b) insulin-induced activation of protein kinase C may activate a PC-specific phospholipase.  相似文献   

14.
Glucagon-Like Peptide-1 (GLP-1) is an incretin peptide secreted from intestinal L-cells, whose potent plasma glucose-lowering action has prompted intense efforts to develop GLP-1 receptor-targeting drugs for treatment of diabetic hyperglycemia. More recently, GLP-1 and its analogues have been shown to exert cardiovascular effects in a number of experimental models. Here we tested exendin-4 (Exe-4), a peptide agonist at GLP-1 receptors, and GLP-1(9-36) amide, the primary endogenous metabolite of GLP-1 (both in the concentration range 0.03-3.0 nM), for their protective effects against ischemia-reperfusion injury (IRI) in an isolated rat heart preparation. When administered, the agents were only present for the first 15 min of a 120 min reperfusion period (postconditioning protocol). Exe-4, but not GLP-1(9-36) amide, showed a strong infarct-limiting action (from 33.2% +/-2.7% to 14.5% +/-2.2% of the ischemic area, p<0.05). This infarct size-limiting effect of Exe-4 was abolished by exendin(9-39) (Exe(9-39)), a GLP-1 receptor antagonist. In contrast, both Exe-4 and GLP-1(9-36) amide were able to augment left ventricular performance (left ventricular developed pressure and rate-pressure product) during the last 60 min of reperfusion. These effects were only partially antagonized by Exe(9-39). We suggest that Exe-4, in addition to being currently exploited in treatment of diabetes, may present a suitable candidate for postconditioning trials in clinical settings of IRI. The divergent agonist effects of Exe-4 and GLP-1(9-36), along with correspondingly divergent antagonistic efficacy of Exe(9-39), seem consistent with the presence of more than one type of GLP-1 receptor in this system.  相似文献   

15.
Obesity is a major public health issue worldwide. Understanding how the brain controls appetite offers promising inroads toward new therapies for obesity. Peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) are coreleased postprandially and reduce appetite and inhibit food intake when administered to humans. However, the effects of GLP-1 and the ways in which PYY and GLP-1 act together to modulate brain activity in humans are unknown. Here, we have used functional MRI to determine these effects in healthy, normal-weight human subjects and compared them to those seen physiologically following a meal. We provide a demonstration that the combined administration of PYY(3-36) and GLP-1(7-36 amide) to fasted human subjects leads to similar reductions in subsequent energy intake and brain activity, as observed physiologically following feeding.  相似文献   

16.
Oxalyl thiolesters (RS-CO-COOH) may represent negative intracellular messengers for insulin action. Using a reverse-phase, ion-pair high pressure liquid chromatographic technique, total intracellular oxalyl thiolesters were measured in insulin-sensitive BC3H-1 myocytes after the addition of insulin. The total oxalyl thiolester concentration increased to a maximum of 2.9 times the basal concentration by 30 min after the addition of 100 microU/ml insulin and decreased to 1.8 times by 180 min. Insulin's stimulation of pyruvate dehydrogenase as measured by lactate oxidation ([1-14C]-lactate --> 14CO2) in intact BC3H-1 myocytes reached a maximum at 15-30 min and returned to basal activity during the 60-90 min measurement interval. These results suggest that oxalyl thiolesters are increased in concentration following insulin-induced signal transduction to reverse insulin-stimulated metabolic events.  相似文献   

17.
Glucagon-like peptide-1(7-36)amide (GLP-1) is a key insulinotropic hormone with the reported potential to differentiate non-insulin secreting cells into insulin-secreting cells. The short biological half-life of GLP-1 after cleavage by dipeptidylpeptidase IV (DPP IV) to GLP-1(9-36)amide is a major therapeutic drawback. Several GLP-1 analogues have been developed with improved stability and insulinotropic action. In this study, the N-terminally modified GLP-1 analogue, N-acetyl-GLP-1, was shown to be completely resistant to DPP IV, unlike native GLP-1, which was rapidly degraded. Furthermore, culture of pancreatic ductal ARIP cells for 72 h with N-acetyl-GLP-1 indicated a greater ability to induce pancreatic beta-cell-associated gene expression, including insulin and glucokinase. Further investigation of the effects of stable GLP-1 analogues on beta-cell differentiation is required to assess their potential in diabetic therapy.  相似文献   

18.
19.
We examined the Na(+)-dependency of the effects of GLP-1(7-36)amide in normal, overnight cultured rat islets. It was found that GLP-1(7-36)amide stimulated insulin secretion, 45Ca(2+)-efflux, and 86Rb(+)-efflux from prelabelled islets. All these effects were abolished by omitting Na+ from the medium and replacing it with N-methyl-glucamine. This suggests that GLP-1(7-36)amide stimulates insulin secretion by depolarizing the beta-cells by increasing their permeability to Na+.  相似文献   

20.
Glucagon-like peptide-1 (GLP-1) was purified to homogeneity by HPLC and anion-exchange chromatography. A molecular mass of 3297.4 Da was obtained by FAB mass spectrometry which corresponded exactly to GLP-1 7-36 NH2, providing evidence that amidation occurs at an arginine residue during the post-translational processing of GLP-1. The distribution of GLP-1 7-36 NH2-like immunoreactivity (GLP-1 7-36 NH2 IR) was determined in the rat gastrointestinal tract. Highest concentrations were found in terminal ileum and colon. Streptozocin-induced diabetic rats, who showed a significant increase in food intake, had a significant increase of GLP-1 7-36 NH2 IR in the colon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号