首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is critical to determine the status of the immune system in transplant recipients, but there are currently no clinical methods available to do so. To address this, we have developed an innovative method to evaluate the effects of immunosuppressants that involves measuring phytohemagglutinin (PHA)-stimulated cytokine secretions in vitro in response to treatments with dexamethasone (DEX), FK506 or mycophenolic acid (MPA). The results revealed that DEX nonspecifically and dose-dependently inhibited the production of 12 cytokines (IL-2, IFN-γ, TNF-α, IL-8, IL-1β, IL-17, IL-4, IL-5, IL-6, IL-10, IL-13, and G-CSF). In contrast, FK506 and MPA selectively inhibited the secretion of IL-2 and IL-13, and MPA unexpectedly increased the production of IL-1β. Therefore, different immunosuppressants have distinct cytokine signatures that can be used to determine whether there is under- or over-immunosuppression in transplant recipients. Immunosuppressants could be adjusted according to the cytokine profiles to maximize immunosuppressive effects while minimizing the risk of infection.  相似文献   

2.
3.
4.
Human synovial fibroblast prostaglandin synthetase activity is inhibited by many different non-steroidal anti-inflammatory agents. Aspirin, indomethacin and phenylbutazone significantly inhibit both PGE1, PGE2 and PGF and PGF synthesis; whereas penicillamine and aurothioglucose are more potent inhibitors of the F prostaglandins. Histidine and antimalarials do not inhibit, to a significant degree, human synovial prostaglandin synthetase activity. Hydrocortisone has no direct effect on prostaglandin synthetase activity. No changes in synthetase activity are observed when synovial cells are incubated with hydrocortisone, and the prostaglandin synthetase system subsequently isolated and assayed. The proposed inhibitory effects of hydrocortisone on prostaglandin production by synovium may be the result of an alteration of enzyme substrate or cofactor concentration rather than a direct effect on prostaglandin synthetase.  相似文献   

5.
In the present study, we examined the role of tumor necrosis factor (TNF) in interleukin (IL)-10 production by dendritic cells (DCs) using bone-marrow derived DCs from wild type (WT) and TNF-α knockout (TNF-α−/−) mice. Toll-like receptor (TLR) stimulation induced substantial level of IL-10 production by WT DCs, but significantly low level of IL-10 production by TNF-α−/− DCs. In contrast, no significant difference was detected in IL-12 p40 production between WT and TNF-α−/− DCs. Addition of TNF-α during TLR stimulation recovered the impaired ability of TNF-α−/− DCs for IL-10 production. This recovery appeared to be associated with an activation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/Akt following the TNF-α addition. Blocking these kinases significantly inhibited IL-10 production by TNF-α−/− DCs stimulated with TLR ligands plus TNF-α. Thus, TNF-α may be a key molecule to regulate the balance between anti-inflammatory versus inflammatory cytokine production in DCs.  相似文献   

6.
7.
The effect of cyclosporin A (CsA) on cytokine production in the tissue chamber model of acute inflammation was investigated. CsA caused a dose-related inhibition of interleukin 1β (IL-1β) production in both normal and athymic mice, confirming earlier conclusions that this effect is not T cell dependent (ED50s 40 and 53 mg/kg p.o., respectively).Tumour necrosis factor alpha (TNF-α) levels were similarly affected with ED50s of 40 and 58 mg/kg p.o. for normal and athymic mice, respectively. By contrast, CsA inhibited interleukin 6 (IL-6) production only in normal mice (ED5027 mg/kg p.o.)Differences in the absolute production of the three cytokines in normal and athymic mice were also noted. IL-1β and IL-6 levels were two-fold higher in athymic mice, while for TNF-α, there was no difference between the two groups.The present findings support the authors' original hypothesis, that the inhibitory mechanism of CsA on IL-1β is not mediated via T cells. The same mechanism also seems responsible for the inhibition of TNF-α production, but not for IL-6, where inhibition by CsA appears to require the presence of T cells.  相似文献   

8.
Hepatic encephalopathy (HE) is associated with cerebral microglia activation. Ammonia, a major toxin of HE, activates microglia in vitro but does not trigger pro-inflammatory cytokine synthesis. In the present study we analysed effects of ammonia on lipopolysaccharide (LPS)-induced upregulation of microglia activation and cytokine mRNA as well as on cytokine secretion in mono-cultured microglia and co-cultured astrocytes and microglia. In mono-cultured microglia LPS (100 ng/ml, 18 h) strongly elevated mRNA levels of the microglia activation marker CD14 and the pro-inflammatory cytokines IL-1α/β, IL-6 and TNF-α. NH4Cl (5 mmol/l) had no effect on LPS-induced upregulation of CD14, IL-1α/β and IL-6 mRNA but enhanced LPS-induced upregulation of TNF-α mRNA in mono-cultured microglia. In co-cultured astrocytes and microglia, however, LPS-induced upregulation of IL-1α/β, TNF-α, IL-6, CD14 but not of IL-10, IL-12A/B or TGFβ1?3 mRNA was attenuated by NH4Cl. LPS-induced upregulation of IL-1α/β, IL-6 and TNF-α was also diminished by the TGR5-ligands allopregnanolone and taurolithocholic acid in mono-cultured microglia. NH4Cl also attenuated LPS-induced release of MCP-1, IL-6 and IL-10 in mono-cultured microglia. mRNA level of surrogate marker for microglia activation (CD14) and for the anti-inflammatory M2-type microglia (CD163, CXCL1, CXCL2) were also elevated in post mortem brain tissue taken from the fusiforme gyrus of patients with liver cirrhosis and HE. The findings suggest that ammonia attenuates LPS-induced microglia reactivity in an astrocyte-dependent way. One may speculate that these anti-inflammatory effects of ammonia may be triggered by neurosteroids derived from astrocytes and may account for absence of microglia reactivity in cerebral cortex of cirrhotic patients with HE.  相似文献   

9.
Prostaglandin E2 (PGE2) is responsible for inflammatory symptoms. However, PGE2 also suppresses pro-inflammatory cytokine production. There are at least 4 subtypes of PGE2 receptors, EP1–EP4, but it is unclear which of these specifically control cytokine production. The aim of this study was to determine which of the different receptors, EP1R–EP4R modulate production of tumor necrosis factor-α (TNF-α) in human monocytic cells.Human blood, or the human monocytic cell line THP-1 were stimulated with LPS. The actions of PGE2, alongside selective agonists of EP1–EP4 receptors, were assessed on LPS-induced TNF-α, IL-1β and IL-10 release. The expression profiles of EP2R and EP4R in monocytes and THP-1 cells were characterised by RT-qPCR. In addition, the production of cytokines was evaluated following knockdown of the receptors using siRNA and over-expression of the receptors by transfection with constructs.PGE2 and also EP2 and EP4 agonists (but not EP1 or EP3 agonists) suppressed TNF-α production in blood and THP-1 cells. LPS also up regulated expression of EP2R and EP4R but not EP1 or EP3. siRNA for either EP2R or EP4R reversed the suppressive actions of PGE2 on cytokine production and overexpression of EP2R and EP4R enhanced the suppressive actions of PGE2.This indicates that PGE2 suppression of TNF-α by human monocytic cells occurs via EP2R and EP4R expression. However EP4Rs also control their own expression and that of EP2 whereas the EP2R does not affect EP4R expression. This implies that EP4 receptors have an important master role in controlling inflammatory responses.  相似文献   

10.
《Free radical research》2013,47(4):268-275
Abstract

Silibinin is a polyphenolic plant flavonoid with anti-inflammatory properties. The present study investigated the effect of silibinin on oxidative metabolism and cytokine production - tumor necrosis factor-alpha (TNF-α), interleukin (IL)12, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, IL-10, and transforming growth factor beta (TGF-β1) - by peripheral blood monocytes (PBM) from preeclamptic pregnant women. It is a case-controlled study involving women with preeclampsia (PE, n = 30) compared with normotensive pregnant (NT, n = 30) and with non-pregnant (NP, n = 30) women. Monocytes were obtained and cultured with or without silibinin (5 μM or 50 μM) for 18 h. Superoxide anion (O2?) and hydrogen peroxide (H2O2) release were determined by specific assays, and cytokine levels were determined by immunoenzymatic assays (ELISA). Monocytes from preeclamptic women cultured without stimulus released higher levels of O22, H2O2 and TNF-α, and lower levels of IL-10 and TGF-β1 than did monocytes from NT and NP women. Treatment in vitro with silibinin significantly inhibited spontaneous O2? and H2O2 release and TNF-α production by monocytes from preeclamptic women. The main effect of silibinin was obtained at 50 μM concentration. Thus, silibinin exerts anti-oxidative and anti-inflammatory effects on monocytes from preeclamptic pregnant women by inhibiting the in vitro endogenous release of reactive oxygen species and TNF-α production.  相似文献   

11.
Endodontic treatment is mainly based on root canal disinfection and its failure may be motivated by microbial resistance. Endodontic therapy can be benefitted by host defense peptides (HDPs), which are multifunctional molecules that act against persistent infection and inflammation. This study aimed to evaluate the antimicrobial, cytotoxic and immunomodulatory activity of several HDPs, namely clavanin A, clavanin A modified (MO) and LL-37, compared to intracanal medication Ca(OH)2. HDPs and Ca(OH)2 were evaluated by: (1) antimicrobial assays against Candida albicans and Enterococcus faecalis, (2) cytotoxicity assays and (3) cytokine tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, interleukin (IL)-1α, IL-6, IL-10 and IL-12 and nitric oxide (NO) production by RAW 264.7 cells incubated with or without heat-killed (HK) C. albicans or E. faecalis combined or not with interferon-γ. The minimum inhibitory concentration (MIC) was established only for E. faecalis (LL-37, 57 μM). Considering cytotoxicity, clavanin MO was able to reduce cell viability in many groups and demonstrated lowest LC50. The Ca(OH)2 up-regulated the production of MCP-1, TNF-α, IL-12 and IL-6 and down-regulated IL-1α, IL-10 and NO. Clavanins up-regulated the TNF-α and NO and down-regulated IL-10 production. LL-37 demonstrated up-regulation of IL-6 and TNF-α production and down-regulation in IL-10 and NO production. In conclusion, LL-37 demonstrated better antibacterial potential. In addition, Ca(OH)2 demonstrated a proinflammatory response, while the HDPs modulated the inflammatory response from non-interference with the active cytokines in the osteoclastogenesis process, probably promoting the health of periradicular tissues.  相似文献   

12.
13.
《Cytokine》2014,67(2):127-132
In tegumentary leishmaniasis caused by Leishmania braziliensis, there is evidence that increased production of IFN-γ, TNF-α and absence of IL-10 is associated with strong inflammatory reaction and with tissue destruction and development of the lesions observed in cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML). We evaluate the role of regulatory cytokines and cytokine antagonists in the downregulation of immune response in L. braziliensis infection. Peripheral blood mononuclear cells from CL and ML were stimulated with soluble Leishmania antigen in the presence or absence of regulatory cytokines (IL-10, IL-27 and TGF-β) or antagonists of cytokines (α-TNF-α and α-IFN-γ). Cytokines production (IL-10, IL-17, TNF-α and IFN-γ) was measured by ELISA. IL-10 and TGF-β downmodulate TNF-α and IL-17 production, whereas IL-27 had no effect in the production of TNF-α, IFN-γ and IL-17 in these patients. Neutralization of TNF-α decreased IFN-γ level and the neutralization of IFN-γ decreased TNF-α level and increased IL-10 production. This study demonstrate that IL-10 and TGF-β are cytokines that appear to be more involved in modulation of immune response in CL and ML patients. IL-10 might have a protective role, since the neutralization of IFN-γ decreases the production of TNF-α in an IL-10-dependent manner.  相似文献   

14.
Immature dendritic cells (DCs) appear to be involved in peripheral immune tolerance via induction of IL-10-producing CD4+ T cells. We examined the role of TNF-α in generation of the IL-10-producing CD4+ T cells by immature DCs. Immature bone marrow-derived DCs from wild type (WT) or TNF-α−/− mice were cocultured with CD4+ T cells from OVA specific TCR transgenic mice (OT-II) in the presence of OVA323-339 peptide. The WT DCs efficiently induced the antigen-specific IL-10-producing CD4+ T cells, while the ability of the TNF-α−/− DCs to induce these CD4+ T cells was considerably depressed. Addition of exogenous TNF-α recovered the impaired ability of the TNF-α−/− DCs to induce IL-10-producing T cells. However, no difference in this ability was observed between TNF-α−/− and WT DCs after their maturation by LPS. Thus, TNF-α appears to be critical for the generation of IL-10-producing CD4+ T cells during the antigen presentation by immature DCs.  相似文献   

15.
16.
17.
Kim KH  Kim DI  Kim SH  Jung EM  Kang JH  Jeung EB  Yang MP 《Cytokine》2011,56(2):224-230
Conjugated linoleic acid (CLA) can stimulate or inhibit immune cell function, and among CLA isomers, trans-10, cis-12 (t10c12)-CLA was shown to participate in the modulation of pro- or anti-inflammatory cytokine secretion. The objective of this study was to examine the effect of t10c12-CLA on tumor necrosis factor (TNF)-α production by lipopolysaccharide (LPS)-stimulated porcine peripheral blood mononuclear cells (PBMCs). In addition, we determined whether these effects were associated with the induction of interleukin (IL)-10. Treatment of LPS-unstimulated porcine PBMCs with t10c12-CLA increased both TNF-α expression and IL-10 production. However, treatment of LPS-stimulated porcine PBMCs with t10c12-CLA suppressed TNF-α production and increased the levels of IL-10. Furthermore, treatment of LPS-stimulated porcine PBMCs with IL-10 suppressed the production of TNF-α. The effects of t10c12-CLA on TNF-α expression by both LPS-naïve and LPS-stimulated PBMCs were inhibited by IL-10 treatment. The suppressive effects of t10c12-CLA on TNF-α production by LPS-stimulated porcine PBMCs were inhibited by an anti-IL-10 polyclonal antibody. These findings suggest that t10c12-CLA has an immunostimulatory effect on porcine PBMCs mediated via the up-regulation of TNF-α production, and an anti-inflammatory effect in LPS-stimulated PBMCs mediated via the down-regulation of TNF-α production, and that both is likely to be associated with the induction of IL-10.  相似文献   

18.
Pyrogenic factors may include the proinflammatory cytokines such as interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and IL-8 (chemokine). Exercise also causes cytokinemia that might result in pyrogenically mediated body temperature elevation. The aim of the present study was to determine the effect of exercise training on exercise-induced plasma concentrations of IL-1β, IL-6, TNF-α, and IL-8. Messenger RNA levels of these factors were also evaluated in peripheral blood leukocytes. We also observed the relationship between cykokines, chemokines, and sweating after exercise. Nine tennis athletes (n=9) and untrained sedentary control subjects (n=10) ran for 1 h at 75% intensity of VO2max. Venous blood samples were analyzed for plasma concentrations and mRNA expression in leukocytes of cytokines and chemokine of interest. Sweat volume was calculated by measuring body weight changes. Leukocyte mRNA expression and plasma protein levels of IL-1β, IL-6, TNF-α, and IL-8 immediately increased after exercise in both groups, but to a much greater extent in the athletic group. However, mRNA expression and plasma protein level for IL-6 and TNF-α, unlike IL-1β and IL-8, decreased more quickly in the athletic group compared to the control group during the recovery period. Compared to the control group, greater sweat loss volumes, and lower body temperatures in athletic group were observed at all time points. In conclusion, exercise training improved physical capacity and sweating function so that body temperature was more easily regulated during and after exercise. This may due to improved production of specific cytokine and chemokine in sweating during exercise.  相似文献   

19.
Pathophysiological and pharmacological concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the cerebrospinal fluid (CSF) induce anorexia in normal rats. Obesity in humans and rodents is associated with increased TNF-α messenger RNA and protein levels in various cell types. This suggests that obese individuals may have differential regulation of cytokine production and dissimilar responsiveness to cytokines. In the present study, we investigated the effects of the intracerebroventricular (ICV) microinfusion of TNF-α (50, 100, and 500 ng/rat), IL-1β (1.0, 4.0, and 8.0 ng), and TNF-α (100 ng) plus IL-1β (1.0 ng) on obese (fa/fa) and lean (Fa/Fa) Zucker rats. The results show that: TNF-α and IL-1β, and the concomitant administration of TNF-a and IL-ip decreased the short-term (4 hours), nighttime (12 hours), and total daily food intakes in obese and lean rats; IL-1β was more potent relative to TNF-α; obese rats showed greater responsiveness to IL-1β: 8.0 ng IL-1β, for example, decreased the 12-hour food intake by 52% in obese and 22% in lean rats. On the other hand, obese and lean rats did not exhibit a significantly different responsiveness to the anorexia induced by 50,100, or 500 ng TNF-α at the 4-hour period; and the concomitant ICV administration of TNF-α and IL-1β induced anorexia with additive (4-hour period) or synergistic (12-hour and 24-hour periods) effects in obese rats. The effect of TNF-α plus IL-1β in lean rats was greater than additive for the 12-hour and 24-hour periods. The difference in suppression of total daily food intake by TNF-α plus IL-1β in obese (-43%) versus lean (-23%) rats was significantly different (p<0.01). The results show that obese (fa/fa) and lean (Fa/Fa) Zucker rats have differential responsiveness to the ICV microinfusion of two different classes of cytokines.  相似文献   

20.
Infection with Chlamydia trachomatis induces inflammatory pathologies in the urogenital tract that can lead to infertility and ectopic pregnancy.Pathogenesis of infection has been mostly attributed to excessive cytokine production.However,precise mechanisms on how C.trachomatis triggers this production,and which protein(s) stimulate inflammatory cytokines remains unknown.In the present study,the C.trachomatis pORF5 protein induced tumor necrosis factor alpha(TNF-α),interleukin-1 beta(IL-1β) and interleukin-8(IL-8) in dose-and time-dependent manners in the THP-1 human monocyte cell line.We found that intracellular p38/mitogen-activated protein kinase(MAPK) and extracellular signal-regulated kinase(ERK)/MAPK signaling pathways were required for the induction of TNF-α,IL-1β and IL-8.Blockade of toll-like receptor 2(TLR2) signaling reduced induction levels of TNF-α,IL-8 and IL-1β.We concluded that the C.trachomatis pORF5 protein might contribute to the inflammatory processes associated with chlamydial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号