首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformational studies of enkephalins are hampered by their high flexibility which leads to mixtures of quasi-isoenergetic conformers in solution and makes NOEs very difficult to detect in NMR spectra. In order to improve the quality of the NMR data, Leu–enkephalin was synthesized with 15N-labelled uniformly on all amide nitrogens and examined in a viscous solvent medium at low temperature. HMQC NOESY spectra of the labelled Leu–enkephalin in a DMSOd6/H2O mixture at 275 K do show numerous NOEs, but these are not consistent with a single conformer and are only sufficient to describe the conformational state as a mixture of several conformers. Here a different approach to the structure–activity relationships of enkephalins is presented: it is possible to analyse the NMR data in terms of limiting canonical structures (i.e. β- and γ-turns) and finally to select only those consistent with the requirements of δ selective agonists and antagonists. This strategy results in the prediction of a family of conformers that may be useful in the design of new δ selective opioid peptides. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The conformational properties of the pentapeptide Ser-Phe-Leu-Leu-Arg (P5), a human thrombin receptor-derived sequence forming part of a tethered ligand which activates the thrombin receptor, and its more active amide derivative Ser-Phe-Leu-Leu-Arg-NH2 (P5-NH2), have been studied by proton NMR spectroscopy in dimethylsulfoxide. Measurements of nuclear Overhauser effects, performed using two-dimensional rotating frame nuclear Overhauser (ROESY) and one-dimensional nuclear Overhauser enhancement (NOE) spectroscopy, revealed that P5 exists mainly in an extended conformation. However, proton–proton 1D-NOEs between Phe CH and Ser CH, Leu3 CH and Leu3 NH, and Leu4 CH and Leu4 NH, as well as between the Ser and Arg sidechains, also implicated a minor conformer for P5 having a curved backbone and a near-cyclic structure. In contrast to P5, measurements of NOEs and ROEs for P5-NH2 revealed a more stabilized cyclic structure which may account for its higher biological potency. Thus strong interresidue sequential NH (i)–NH (i + 1) interactions, as well as C-terminal carboxamide to N-terminal side-chain interactions, i.e., Arg CONH2 to Phe ring and Arg CONH2 to Ser , observed at lower levels of the ROESY spectrum, supported a curved backbone structure for SFLLR-NH2. Since the higher potaency P5-NH2 analogue adopts predominantly a cyclic structure, a cyclic bioactive conformation for thrombin receptor agonist peptides is suggested.  相似文献   

3.
Dynorphin A, the endogenous agonist for the κ opioid receptor, has been studied by NMR spectroscopy in methanol, acetonitrile, DMSO and in mixtures of hexafluoroacetone/water and DMSO/water. NMR data in the DMSO/water cryomixture at 278 K are consistent with a conformer in which the N‐terminal part, like the corresponding message domain of enkephalins, is poorly ordered, whereas the C‐terminal part is folded in a loop centred around Pro10. The folded structure of the C‐terminal part (address moiety) may shed light on the role of the essential residues Arg7, Lys11 and Lys13. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins, Galphabetagamma) mediate the signalling process of a large number of receptors, known as G protein-coupled receptors. The C-terminal domain of the heterotrimeric G protein alpha-subunit plays a key role in the selective activation of G proteins by their cognate receptors. The interaction of this domain can take place at the end of a cascade including several successive conformational modifications. Galpha(s)(350-394) is the 45-mer peptide corresponding to the C-terminal region of the Galpha(s) subunit. In the crystal structure of the Galpha(s) subunit it encompasses the alpha4/beta6 loop, the beta6 beta-sheet segment and the alpha5 helix region. Following a previous study based on the synthesis, biological activity and conformational analysis of shorter peptides belonging to the same Galpha(s) region, Galpha(s)(350-394) was synthesized and investigated. The present study outlines the central role played by the residues involved in the alpha4/beta6 loop and beta6/alpha5 loops in the stabilization of the C-terminal Galpha(s)alpha-helix. H(2)O/(2)H(2)O exchange experiments, and NMR diffusion experiments show interesting evidence concerning the interaction between the SDS micelles and the polypeptide. These data prompt intriguing speculations on the role of the intracellular environment/cellular membrane interface in the stabilization and functionality of the C-terminal Galpha(s) region.  相似文献   

5.
The present study describes the synthesis and crystallographic analysis of αγ hybrid peptides, Boc‐Gpn‐L‐Pro‐NHMe ( 1 ), Boc‐Aib‐Gpn‐L‐Pro‐NHMe ( 2 ), and Boc‐L‐Pro‐Aib‐Gpn‐L‐Pro‐NHMe ( 3 ). Peptides 1 and 2 adopt expanded 12‐membered (C12) helical turn over γα segment. Peptide 3 promotes the ribbon structure stabilized by type II β‐turn (C10) followed by the expanded C12 helical γα turn. Both right‐handed and left‐handed helical conformations for Aib residue are observed in peptides 2 and 3 , respectively Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
This review focuses, in a non-exhaustive manner, on the essential structural and conformational features of protein-carbohydrate interactions and on some applications of NMR spectroscopy to deal with this topic from different levels of complexity.  相似文献   

7.
β-Amyloid peptides are the main protein components of neuritic plaques and may be important in the pathogenesis of Alzheimer's Disease. The determination of the structure of β-amyloid fibrils poses a challenge because of the limited solubility of β-amyloid peptides and the noncrystalline nature of fibrils formed from these peptides. In this paper, we describe several physicochemical approaches which have been used to examine fibrils and the fibrillogenesis of peptide models of β-amyloid. Recent advances in solid state NMR, such as the DRAWS pulse sequence, have made this approach a particularly attractive one for peptides such as β-amyloid, which are not yet amenable to high-resolution solution phase NMR and crystallography. The application of solid state NMR techniques has yielded information on a model peptide comprising residues 10–35 of human β-amyloid and indicates that in fibrils, this peptide assumes a parallel β-strand conformation, with all residues in exact register. In addition, we discuss the use of block copolymers of Aβ peptides and polyethylene glycol as probes for the pathways of fibrillogenesis. These methods can be combined with other new methods, such as high-resolution synchrotron X-ray diffraction and small angle neutron and X-ray scattering, to yield structural data of relevance not only to disease, but to the broader question of protein folding and self-assembly.  相似文献   

8.
The conformation of segments corresponding to the four α-helical stretches found in human granulocyte-macrophage colony-stimulating factor was studied in water solution in the presence of different amounts of 2,2,2-trifluoroethanol (TFE). The CD spectra reveal the onset of secondary structure upon addition of TFE. The final amount of helical conformation varies among the four peptides. In all cases, the conformational transition is complete before 50% TFE (v/v). 1H-NMR studies were conducted at this solvent composition, leading to the assignment of all the resonances and to the definition of the secondary structure for all four fragments. © 1997 European Peptide Society and John Wiley & Sons, Ltd. J. Pep. Sci.3: 336–346 No. of Figures: 12. No. of Tables: 5. No. of References: 25  相似文献   

9.
The conformation of oligomers of β‐amino acids of the general type Ac‐[β‐Xaa]n‐NHMe (β‐Xaa = β‐Ala, β‐Aib, and β‐Abu; n = 1–4) was systematically examined at different levels of ab initio molecular orbital theory (HF/6‐31G*, HF/3‐21G). The solvent influence was considered employing two quantum‐mechanical self‐consistent reaction field models. The results show a wide variety of possibilities for the formation of characteristic elements of secondary structure in β‐peptides. Most of them can be derived from the monomer units of blocked β‐peptides with n = 1. The stability and geometries of the β‐peptide structures are considerably influenced by the side‐chain positions, by the configurations at the Cα‐ and Cβ‐atoms of the β‐amino acid constituents, and especially by environmental effects. Structure peculiarities of β‐peptides, in particular those of various helix alternatives, are discussed in relation to typical elements of secondary structure in α‐peptides. © 1999 John Wiley & Sons, Inc. Biopoly 50: 167–184, 1999  相似文献   

10.
This review focuses, in a non-exhaustive manner, on the essential structural and conformational features of protein–carbohydrate interactions and on some applications of NMR spectroscopy to deal with this topic from different levels of complexity.  相似文献   

11.
To obtain general rules of peptide design using α,β-dehydro-residues, a sequence with two consecutive ΔPhe-residues, Boc-L -Val-ΔPhe–ΔPhe- L -Ala-OCH3, was synthesized by azlactone method in solution phase. The peptide was crystallized from its solution in an acetone/water mixture (70:30) in space group P61 with a=b=14.912(3) Å, c= 25.548(5) Å, V=4912.0(6) Å3. The structure was determined by direct methods and refined by a full matrix least-squares procedure to an R value of 0.079 for 2891 observed [I?3σ(I)] reflections. The backbone torsion angles ?1=?54(1)°, ψ1= 129(1)°, ω1=?177(1)°, ?2 =57(1)°, ψ2=15(1)°, ω2 =?170(1)°, ?3=80(1)°, ψ3 =7(2)°, ω3=?177(1)°, ?4 =?108(1)° and ψT4=?34 (1)° suggest that the peptide adopts a folded conformation with two overlapping β-turns of types II and III′. These turns are stabilized by two intramolecular hydrogen bonds between the CO of the Boc group and the NH of ΔPhe3 and the CO of Val1 and the NH of Ala4. The torsion angles of ΔPhe2 and ΔPhe3 side chains are similar and indicate that the two ΔPhe residues are essentially planar. The folded molecules form head-to- tail intermolecular hydrogen bonds giving rise to continuous helical columns which run parallel to the c-axis. This structure established the formation of two β-turns of types II and III′ respectively for sequences containing two consecutive ΔPhe residues at (i+2) and (i+3) positions with a branched β-carbon residue at one end of the tetrapeptide.  相似文献   

12.
β‐Amino acids containing α,β‐hybrid peptides show great potential as peptidomimetics. In this paper, we describe the synthesis and affinity to μ‐opioid and δ‐opioid receptors of α,β‐hybrids, analogs of the tetrapeptide Tyr‐ d ‐Ala‐Phe‐Phe‐NH2 (TAPP). Each amino acid was replaced with an l ‐ or d ‐β3h‐amino acid. All α,β‐hybrids of TAPP analogs were synthesized in solution and tested for affinity to μ‐opioid and δ‐opioid receptors. The analog Tyr‐β3h‐ d ‐Ala‐Phe‐PheNH2 was found to be as active as the native tetrapeptide. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Methyl α-cellobioside (methyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranoside) was labeled with 13C at C4′ for use in NMR studies in DMSO-d6 solvent to attempt the detection of a trans-H-bond J-coupling (3hJCCOH) between C4′ and OH3. Analysis of the OH3 signal at 600 MHz revealed only the presence of two homonuclear J-couplings: 3JH3,OH3 and a smaller, longer range JHH. No evidence for 3hJC4′,OH3 was found. The longer range JHH was traced to 4JH4,OH3 based on 2D 1H–1H COSY data and inspection of the H2 and H4 signal lineshapes. A limited set of DFT calculations was performed on a methyl cellobioside mimic to evaluate the structural dependencies of 4JH2,O3H and 4JH4,O3H on the H3–C3–O3–H torsion angle. Computed couplings range from about −0.7 to about +1.1 Hz, with maximal values observed when the C–H and O–H bonds are roughly diaxial.  相似文献   

14.
Our previous studies of the potential utility of the CαDα stretch frequency, ν(CD), as a tool for determining conformation in peptide systems (Mirkin and Krimm, J Phys Chem A 2004, 108, 10923–10924; 2007, 111, 5300–5303) dealt with the spectroscopic characteristics of isolated alanine peptides with αR, β, and polyproline II structures. We have now extended these ab initio calculations to include various explicit‐water environments interacting with such conformers. We find that the structure‐discriminating feature of this technique is in fact enhanced as a result of the conformation‐specific interactions of the bonding waters, in part due to our finding (Mirkin and Krimm, J Phys Chem B 2008, 112, 15268) that Cα? Dα…O(water) hydrogen bonds can be present in addition to those expected between water and the CO and NH of the peptide groups. In fact, ν(CD) is hardly affected by the latter bonding but can be shifted by up to 70 cm?1 by the former hydrogen bonds. We also discuss the factors that will have to be considered in developing the molecular dynamics (MD) treatment needed to satisfactorily take account of the influence of outer water layers on the structure of the first‐layer water molecules that hydrogen bond to the peptide backbone. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 791–800, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
A synthetic methodology has been developed for peptide bond formation with α-hydroxmethylserine as the carboxyl or amino component and also for the preparation of homo-sequences. The key intermediate, O,O-protected α-hydroxymethylserine in the form of an isopropylidene derivative, is easily accessible and represents the first example of a heterocyclic Cα,α-disubstituted amino acid containing an 1,3-dioxane ring. The use of this intermediate facilitates protection of the sterically hindered amino and carboxyl groups and is advantageous for the coupling and deprotection steps. X-ray structure determination of Z-HmS(Ipr)–Ala–OMe revealed that the two crystallographically independent molecules present in the asymmetric unit adopt an S-shaped conformation. In the one molecule the achiral HmS(Ipr) residue has the torsion angle values (ϕ==61.4°,ψ=40.8°) in the left-handed helical region of the Ramachandran map, while in the second molecule the negative torsion angles (ϕ=−60.1°, ψ=–44.4°) are associated with the right-handed helix. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Opiate binding sites in five brain regions were labeled with the μ and δ markers, 3H-morphine and 3H-[D-Ala2,D-leu5]enkephalin, respectively. The highest densities of both 3H-morphine and 3H-DADLE labeled sites are found in striatum and frontal cortex. Hypothalamus and midbrain contain predominantly 3H-morphine labeled sites. The selectivity of the opioid peptides [D-Ala2,D-leu5]enkephalin, β-endorphin and dynorphin(1–13) for the two opiate sites was investigated by comparing the potency of these unlabeled compounds against the μ and δ markers in different brain regions. This determination has the effect of controlling for the breakdown of peptides within each region. While the enkephalin analogue shows a preference for the δ binding site and β-endorphin is more nearly equipotent towards the two binding sites, dynorphin(1–13) shows a high affinity and selective preference for the μ binding site over the δ site. The potency of the opioid peptides in displacing the μ and δ markers varies from region to region according to the relative densities of the two opiate binding site populations.  相似文献   

17.
The three-dimensional structure of the Sorghum bicolor seed protein γ-thionin SIα1 has been determined by 2D 1H nuclear magnetic resonance (NMR) spectroscopy. The secondary structure of this 47-residue antifungal protein with four disulphide bridges consists of a three-stranded antiparallel sheet and one helix. The helix is tethered to the sheet by two disulphide bridges which link two successive turns of the helix to alternate residues i, i + 2 in one strand. Possible binding sites for antifungal activity are discussed. The same fold has been observed previously in several scorpion toxins. Proteins 32:334–349, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
The three-dimensional structure of a potent SSTR3-selective analogue of somatostatin, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-Agl(8)(N(beta) Me, 2-naphthoyl)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-Agl(8)(N(beta) Me, 2-naphthoyl)]-SRIF) (peptide 1) has been determined by (1)H NMR in water and molecular dynamics (MD) simulations. The peptide exists in two conformational isomers differing mainly by the cis/trans isomerization of the side chain in residue 8. The structure of 1 is compared with the consensus structural motifs of other somatostatin analogues that bind predominantly to SSTR1, SSTR2/SSTR5 and SSTR4 receptors, and to the 3D structure of a non-selective SRIF analogue, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-2Nal(8)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-2Nal(8)]-SRIF) (peptide 2). The structural determinant factors that could explain selectivity of peptide 1 for SSTR3 receptors are discussed.  相似文献   

19.
The crystal structures of three fully protected tripeptides containing the Dϕg residue (Cα,α-diphenylglycine) in the central position are reported, namely Z-Gly-Dϕg-Gly-OMe ( a ), Z-Gly-Dϕg-Aib-OMe ( b ) and Z-Aib-Dϕg-Aib-OMe ( c ). The molecular conformations are quite unusual because the Dϕg residue adopts a folded conformation in the 310-helical region when the following residue adopts a folded conformation of opposite handedness (peptides b and c ). In contrast, the Dϕg residue adopts the more frequently observed fully extended conformation when the following residue adopts a semi-extended conformation (peptide a ). These findings are in agreement with the theoretical calculations on Ac-Dϕg-Aib-NHCH3 and Ac-Aib-Dϕg-NHCH3 also reported in this work. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
An elongated version of the de novo designed beta-hairpin peptide, BH8, has allowed us to gain insight into the role of electrostatic interactions in beta-hairpin stability. A Lys-Glu electrostatic pair has been introduced by adding a residue at the beginning and at the end of the N-terminal and C-terminal strands, respectively, of the beta-hairpin structure, in both orientations. The two resulting peptides and controls having Ala residues at these positions and different combinations of Ala with Lys, or Glu residues, have been analyzed by nuclear magnetic resonance (NMR), under different pH and ionic strength conditions. All of the NMR parameters, in particular the conformational shift analysis of Calpha protons and the coupling constants, (3)J(HNalpha), correlate well and the population estimates are in reasonable agreement among the different methods used. In the most structured peptides, we find an extension of the beta-hairpin structure comprising the two extra residues. Analysis of the pH and salt dependence shows that ionic pairs contribute to beta-hairpin stability. The interaction is electrostatic in nature and can be screened by salt. There is also an important salt-independent contribution of negatively charged groups to the stability of this family of beta-hairpin peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号