首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.  相似文献   

2.
Exogenously applied brassinolide (BL) increased both gravitropic curvature and length of primary roots of Arabidopsis at low concentration (10(-10) M), whereas at higher concentration, BL further increased gravitropic curvature while it inhibited primary root growth. BRI1-GFP plants possessing a high steady-state expression level of a brassinosteroid (BR) receptor kinase rendered the plant's responses to gravity and root growth more sensitive, while BR-insensitive mutants, bri1-301 and bak1, delayed root growth and reduced their response to the gravitropic stimulus. The stimulatory effect of BL on the root gravitropic curvature was also enhanced in auxin transport mutants, aux1-7 and pin2, relative to wild-type plants, and increasing concentration of auxin attenuated BL-induced root sensitivity to gravity. Interestingly, IAA treatment to the roots of bri1-301 and bak1 plants or of plants pretreated with a BL biosynthetic inhibitor, brassinazole, increased their sensitivity to gravity, while these treatments for the BL-hypersensitive transgenic plants, BRI1-GFP and 35S-BAK1, were less effective. Expression of a CYP79B2 gene, encoding an IAA biosynthetic enzyme, was suppressed in BL-hypersensitive plant types and enhanced in BL-insensitive or -deficient plants. In conclusion, our results indicate that BL interacts negatively with IAA in the regulation of plant gravitropic response and root growth, and its regulation is achieved partly by modulating biosynthetic pathways of the counterpart hormone.  相似文献   

3.
A root gravitropism mutant was isolated from the DuPont Arabidopsis thaliana T-DNA insertional mutagenesis collection. This mutant has reduced root gravitropism, hence the name rgrl. Roots of rgrl are shorter than those of wild-type, and they have reduced lateral root formation. In addition, roots of rgrl coil clockwise on inclined agar plates, unlike wild-type roots which grow in a wavy pattern. The rgrl mutant has increased resistance, as measured by root elongation, to exogenously applied auxins (6-fold to indole-3-acetic acid, 3-fold to 2,4-dichlorophenoxyacetic acid, and 2-fold to napthyleneacetic acid). It is also resistant to polar auxin transport inhibitors (2-fold to triiodobenzoic acid and 3- to 5-fold lo napthyleneacetic acid). The rgrl mutant does not appear to be resistant to other plant hormone classes. When grown in the presence of 10?2 M 2.4-dichlorophenoxyacetic acid, rgrl roots have fewer root hairs than wild type. All these rgrl phenotypes are Mendelian recessives. Complementation tests indicate that rgrl is not allelic to previously characterized agravitropic or auxin-resistant mutants. The rgrl locus was mapped using visible markers to 1.4 ± 0.6 map units from the CHI locus at 1–65.4. The rgrl mutation and the T-DNA cosegregate, suggesting that rgrl was caused by insertional gene inactivation.  相似文献   

4.
Floral transition mutants in Arabidopsis   总被引:3,自引:0,他引:3  
An inventory of genetic differences in flowering time in Arabidopsis is presented and discussed. Many genes influence the transition to flowering in a quantitative way. Two groups of mutants and natural variants can be distinguished: those that are responsive to environmental factors and those that are less responsive or unresponsive. It is possible that all late/early-flowering mutants isolated to date carry a mutation with an effect, either promotive or repressive, on a floral repressor. The interaction between light perception and flowering has been studied by analysis of phytochrome- and cryptochrome-deficient mutants, which showed that phyA and probably also cryptochrome have a promotive role in flowering, whereas phyB and other stable phytochromes have an inhibitory role. A circadian rhythm is important in establishing daylength sensitivity, as was shown by the phenotype of the elf 3 mutants.  相似文献   

5.
6.
Analysis of leaf proteins in late flowering mutants of Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Late flowering monogenic mutants of Arabidopsis thaliana (L.) Heynh. at the loci co, gi, fca, fve, fwa, fha, fpa, fy and their corresponding wild type, Landsberg erecta , were analysed by two-dimensional gel electrophoresis. All plants were grown under continuous light and proteins were extracted from leaves of the same age (20-day-old). The polypeptide patterns of the mutants at the loci co, gi, fca, fve, fwa, fha, fpa , and Landsberg erecta were identical. The mutant at the fy locus showed a qualitative difference with Landsberg erecta . Crosses were made between this line and the wild type Landsberg erecta . F2 plants, resulting from autopollination of the hybrid, were analysed and showed no cosegregation between the observed protein and the flowering phenotype, indicating that these two lines differ by more than a single mutation.  相似文献   

7.
The embryo-defective (emb) mutants of Arabidopsis constitute a large and diverse group of mutants disrupted in a broad range of embryonic processes, including morphogonesis, cell differentiation, and maturation programs. This report describes a subset of these mutants, the late embryo defectives, which develop beyond the globular stage of embryogenesis but fail to complete normal morphogenesis. A representative sample of 12 late mutants was chosen for this study, patterns of morphogenesis were characterized, the germination potential of mutant seeds was investigated, and additional mutant alleles within the collection were identified. Morphological defects in mutant embryos became apparent during the heart stage of development, when embryos normally begin the rapid cell division and expansion required for the completion of morphogenesis. Despite their morphological abnormalities, mutant embryos often germinated from dry seed, demonstrating that genetic programs required for the establishment of desiccation tolerance remained intact. Mutant seedlings displayed a wide range of developmental abnormalities, including altered morphology, lack of pigmentation, dwarfism, and disorganized vegetative growth. One late mutant was found to be allelic to an early embryo defective that arrests at the globular stage. These results suggest that a number of late EMB genes encode basic cellular and metabolic functions needed for cell division, enlargement, and embryonic growth. The rapid growth and metabolic changes that occur at the heart stage may present a barrier to normal development in the late mutants, resulting in altered embryo morphology and other developmental defects. It is proposed that many Arabidopsis mutants with abnormal embryo and seedling morphology are not defective in the regulation of pattern formation or morphogenesis, but rather in fundamental physiological and cellular processes required for the completion of normal growth and development. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Abstract. The xanthophyll content of wild type and abscisic acid (ABA) - deficient mutants of pea and Arabidopsis thaliana was determined. The wilty mutant of pea was indistinguishable from the non-mutant control. In contrast, plants homozygous for mutant alleles at the aba locus of Arabidopsis were very different from wild type. In these mutants, zeaxanthin accumulated to abnormally high levels. The major carotenoids, violaxanthin and 9'- cis -neoxanthin were virually absent from the mutant chromatograms. It was concluded that the aba genetic lesion impairs the epoxidation of zeaxanthin to violaxanthin and that this results in an inability to accumulate ABA. This provides clear evidence that zeaxanthin is a precursor of ABA.  相似文献   

9.
Abstract. Two nonallelic, nuclear recessive mutants of Arabidopsis thaliana (L.) Heynh. which become chlorotic when grown in an atmosphere enriched to 20000 cm3 CO2 m-3 have been isolated. For one of the mutants, chlorosis begins at the veins and gradually spreads to the interveinal regions. A minimum photon flux density of ca 50 μmol m-2 s-1 is required for this response. For the other mutant, the yellowing is independent of the light intensity and begins at the basal regions of the leaves and spreads to the tips. The injurious effects of CO2 seem to be restricted to photosynthetic tissues, since root elongation and callus growth were not inhibited by a high atmospheric CO2 concentration for either mutant. Neither mutant became chlorotic in a low O2 atmosphere that suppressed photorespiration as effectively as the elevated CO2 does. Thus, the mutations do not impose a requirement for photorespiration. The possibilities that the high CO2-sensitive phenotypes are caused by an effect of CO2 in stomata, on ethylene synthesis, or on mineral uptake are discussed but are considered unlikely.  相似文献   

10.
A semi-dominant mutant suppressor of hy2 (shy2-1D) of Arabidopsis thaliana, originally isolated as a photomorphogenesis mutant, shows altered auxin responses. Recent molecular cloning revealed that the SHY2 gene is identical to the IAA3 gene, a member of the primary auxin-response genes designated the Aux/IAA gene family. Because Aux/IAA proteins are reported to interact with auxin response factors, we investigated the pattern of expression of early auxin genes in the iaa3/shy2-1D mutant. RNA hybridization analysis showed that levels of mRNA accumulation of the early genes were reduced dramatically in the iaa3/shy2-1D mutants, although auxin still enhanced gene expression in the iaa3/shy2-1D mutant. Histochemical analysis using a fusion gene of the auxin responsive domain (AuxRD) and the GUS gene showed no IAA-inducible GUS expression in the root elongation zone of the iaa3/shy2-1D mutant. On the other hand, ectopic GUS expression occurred in the hypocotyl, cotyledon, petiole and root vascular tissues in the absence of auxin. These results suggest that IAA3/SHY2 functions both negatively and positively on early auxin gene expression.  相似文献   

11.
12.
The use of microarrays to study the anaerobic response in Arabidopsis   总被引:1,自引:0,他引:1  
  相似文献   

13.
We have studied the morphology and vein branching of rosette leaves in Arabidopsis thaliana mutants as and sa, which proved to be alleles of the A.thaliana AS1 and AS2 genes, respectively. We have also analyzed the localization of bioactive auxin, as measured by the expression of the DR5::GUS transgene, as well as the expression patterns of BP, as measured by the expression of the BP::GUS transgene in leaves of the mutants. In mature leaves of the mutants, BP was expressed ectopically. Furthermore, the mutants showed some defects in the localization and concentration of free auxin compared to the wild type. Our results of studying new alleles of AS1 and AS2 support their role in control of class I KNOX genes and auxin transport.  相似文献   

14.
The effect of daylength on flowering was investigated in the following mutants of Arabidopsis thaliana : phytochrome B deficient ( hy3=phyB ); phytochrome chromophore deficient ( hy2 ); late-flowering ( co, gi. fca and fwa ); the hy2 and hy3 , late-flowering double mutants and the hy2, hy3 , late-flowering triple mutants. The hy mutants flower with fewer rosette leaves than the Landsberg erecta wild type under both long day and short day conditions and express this effect to a different degree in all late-flowering mutant backgrounds and under both daylengths, with the exception of fca under short days. The number of cauline leaves and days to flowering is less affected by the hy genotype. The hy2, hy3 double mutants flower with even fewer rosette leaves than the hy2 and hy3 monogenic mutants, suggesting an inhibitory role for phytochrome B and other stable phytochromes on flowering. The complex interaction between phytochrome, daylength and the effect of the late-flowering genes on the various parameters that describe the transition to flowering in Arabidopsis is discussed.  相似文献   

15.
16.
17.
Variation in dynamics of phytochrome A in Arabidopsis ecotypes and mutants   总被引:2,自引:0,他引:2  
Phytochromes are photoreceptors in plants which can exist in two different conformations: the red light‐absorbing form (Pr) and the far‐red light‐absorbing form (Pfr), depending on the light quality. The Pfr form is the physiologically active conformation. To attenuate the Pfr signal for phytochrome A (phyA), at least two different mechanisms exist: destruction of the molecule and dark reversion. Destruction is an active process leading to the degradation of Pfr. Dark reversion is the light‐independent conversion of physiologically active Pfr into inactive Pr. Here, we show that dark reversion is not only an intrinsic property of the phytochrome molecule but is modulated by cellular components. Furthermore, we demonstrate that dark reversion of phyA may be observed in Arabidopsis ecotype RLD but not in other Arabidopsis ecotypes. For the first time, we have identified mutants with altered dark reversion and destruction in a set of previously isolated loss of function PHYA alleles (Xu et al. Plant Cell 1995, 7, 1433–1443). Therefore, the dynamics of the phytochrome molecule itself need to be considered during the characterization of signal transduction mutants.  相似文献   

18.
生长素信号转导途径与植物胁迫反应相互作用的证据(英)   总被引:6,自引:0,他引:6  
生长素影响植物多种生理过程 ,有报道显示生长素可能影响植物对逆境胁迫的反应。我们利用cDNA阵列技术鉴定拟南芥 (Arabidopsisthaliana (L .)Heynh .)的生长素应答基因 ,发现多个胁迫应答基因受生长素抑制 ,包括ArabidopsishomologofMEKkinase1(ATMEKK1) ,RelA/SpoThomolog 3(At_RSH3) ,Catalase 1(Cat1)和Ferritin 1(Fer1) ,说明生长素可调节胁迫应答基因的表达。此外 ,我们还证明吲哚乙酸 (IAA)合成途径中的腈水解酶基因nitrilase 1(NIT1)和nitrilase 2 (NIT2 )受盐胁迫诱导 ,提示在逆境条件下IAA的合成可能随之增加。我们利用生长素不敏感突变体研究生长素与逆境反应相互作用的信号转导 ,发现胁迫应答基因在野生型和生长素不敏感突变体auxinresistant2 (axr2 )中可被盐胁迫诱导 ,而在auxinresistant1_3(axr1_3)中则不被诱导 ,说明生长素与逆境胁迫反应的相互作用可能发生在泛素途径。  相似文献   

19.
生长素影响植物多种生理过程,有报道显示生长素可能影响植物对逆境胁迫的反应.我们利用cDNA阵列技术鉴定拟南芥(Arabidopsis thaliana (L.) Heynh.)的生长素应答基因,发现多个胁迫应答基因受生长素抑制,包括Arabidopsis homolog of MEK kinase1 (ATMEKK1),RelA/SpoT homolog 3 (At-RSH3),Catalase 1 (Cat1) 和Ferritin 1 (Fer1),说明生长素可调节胁迫应答基因的表达.此外,我们还证明吲哚乙酸(IAA)合成途径中的腈水解酶基因nitrilase 1 (NIT1) 和nitrilase 2 (NIT2) 受盐胁迫诱导,提示在逆境条件下IAA的合成可能随之增加.我们利用生长素不敏感突变体研究生长素与逆境反应相互作用的信号转导,发现胁迫应答基因在野生型和生长素不敏感突变体auxin resistant 2 (axr2) 中可被盐胁迫诱导,而在auxin resistant 1-3 (axr1-3)中则不被诱导,说明生长素与逆境胁迫反应的相互作用可能发生在泛素途径.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号