首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Underwater irradiance was measured at intervals of 20 min for one year at 2 water depths (2.5 and 3.5 m below M.L.W.S.) and in 3 spectral regions in the sublittoral region of the rocky island of Helgoland. Data are presented for spectral and total irradiance at water depths ranging from 2 to 15 m (below M.L.W.S.). 90% of the total annual light reaching sublittoral habitats is received during the period from April to September, when Jerlov water type 7 (occasionally water type 5) dominates. During the other half of the year, the water is very turbid, and transparency is so low that long dark periods occur even at moderate water depths. The total annual light received at the lower kelp limit (Laminaria hyperborea), at 8 m water depth, is 15 MJ m–2 year–1 or 70 E m–2 year–1, which corresponds to 0.7% of surface irradiance (visible). At the lower algal limit (15 m water depth) these values are 1 MJ m–2 year–1 or 6 E m–2 year–1, corresponding to 0.05% of surface irradiance. These data are similar to measurements at the same limits in several different geographical areas, and may determine the depth at which these limits occur.  相似文献   

2.
1. In extremely acid mining lakes, benthic filamentous green algae (Zygnemataceae, Chlorophyta) thrive as effective competitors for limited carbon (C). These algae could supply C for microbial‐mediated benthic alkalinity generation. However, biomass, productivity and impact of the acidobiontic filamentous green algae at pH ≤3 have not previously been determined. 2. Periphytic filamentous green algae was mapped by harvesting their biomass from 85 1 × 1 m quadrats in mining lake Grünewalder Lauch. Zygogonium ericetorum colonised water depths between 1.6 and 10.5 m covering 88% of total area. Biomass peaked at 5–6 m depth. Total Zygogonium biomass amounted to 72.2 t dry weight for the whole lake (0.94 km2), which corresponds to 16.1 t C and the accumulation of primary production from 2.2 years. 3. Growth of Zygogonium is moderately N, C and extremely P deficient, and seriously stressed by high rates of Fe deposition during summer. Consequently, net primary production (NPP) of Zygogonium, calculated from measured photosynthesis versus irradiance characteristics and calculated underwater irradiance (0.13 g C m?2 year?1) and in situ oxygen measurements (7.8 g C m?2 year?1), corresponds to only 0.3% and 18.1% of pelagic NPP. 4. Neither pelagic nor benthic Zygogonium primary production can supply enough C for efficient acidity removal. However, at rates of benthic NPP in summer of 21.4 mg C m?2 day?1, Zygogonium contributed 26% of the C equivalents to remove acidity associated with ferric iron, contributing at least seasonally to efficient alkalinity generation.  相似文献   

3.
  • 1 The underwater light climate in Loch Ness is described in terms of mixing depth (Zm) and depth of the euphoric zone (Zeu). During periods of complete mixing, Zm equates with the mean depth of the loch (132 m), but even during summer stratification the morphometry of the loch and the strong prevailing winds produce a deep thermocline and an epilimnetic mixed layer of about 30 m or greater. Hence, throughout the year the quotient Zm/Zeu is exceptionally high and the underwater light climate particularly unfavourable for phytoplankton production and growth.
  • 2 Phytoplankton biomass expressed as chlorophyll a is very low in Loch Ness, with a late summer maximum of less than 1.5 mg chlorophyll a m-3 in the upper 30 m of the water column. This low biomass and the resulting very low photosynthetic carbon fixation within the water column are evidence that a severe restraint is imposed on the rate at which phytoplankton can grow in the loch.
  • 3 The chlorophyll a content per unit of phytoplankton biovolume and the maximum, light-saturated specific rate of photosynthesis are both parameters which might be influenced by the light climate under which the phytoplankton have grown. However, values obtained from Loch Ness for both chlorophyll a content (mean 0.0045 mg mm-3) and maximum photosynthetic rate (1–4 mg C mg Chla-1 h-1) are within the range reported from other lakes.
  • 4 Laboratory bioassays with the natural phytoplankton community from Loch Ness on two occasions in late summer when the light climate in the loch is at its most favourable, suggest that even then limitation of phytoplankton growth is finely balanced between light and phosphorus limitation. Hence, for most of the year, when the light climate is less favourable, phytoplankton growth will be light limited.
  • 5 Quotients relating mean annual algal biomass as chlorophyll a (c. 0.5 mg Chla m-3) and the probable annual specific areal loading of total phosphorus (0.4–1.7 g TP m-2 yr-1) suggest that the efficiency with which phytoplankton is produced in Loch Ness per unit of TP loading is extremely low when compared with values from other Scottish lochs for which such an index has been calculated. This apparent inefficiency can be attributed to suppression of photosynthetic productivity in the water column due to the unfavourable underwater light climate.
  • 6 These several independent sources of evidence lead to the conclusion that phytoplankton development in Loch Ness is constrained by light rather than by nutrients. Loch Ness thus appears to provide an exception to the generally accepted paradigm that phytoplankton development in lakes of an oligotrophic character is constrained by nutrient availability.
  相似文献   

4.
The use of dimethyl sulfoxide (DMSO) to extract chlorophyll a and l4C-labelled photosynthate from endolithic algae of sparsely vegetated, cold temperate grasslands on the Colorado Plateau in Arizona has yielded the first estimates of biomass and photosynthesis for this unusual community. These subsurface microorganisms are found widespread in exposed Coconino Sandstone, a predominant formation in this cold temperate region. The endolithic community in Coconino Sandstone, composed primarily of coccoid blue-green and coccoid/sarcinoid green algae, yielded a biomass value (as chlorophyll a content) of 87 mg m-2 rock surface area and a photosynthetic rate of 0.37 mg CO2 dm 2 hr-1 or 0.48 mg CO2 mg-1 chl a hr-1. The endolithic algal community contributes moderate biomass (5–10%) and substantial photosynthesis (20–80%) to the sparse grassland ecosystem.  相似文献   

5.
A typical marl lake of the Upper Great Lakes region has very few quantitatively important aquatic macrophytes. The macrophytes, however, dominate the total primary production of the lake. Submersed vegetation is extremely sparse on the shallow (less than I m) marl bench that characterizes the littoral of these lakes, and is completely dominated by one. little-known species (Scirpus subterminalis Torr.) between 1 and 7 m. A detailed investigation of the spatial and seasonal distribution of macrophytic species and biomass showed that S. subterminalis strongly dominated the lake (79% of total biomass). S. suhterminalis represented an almost pure stand (to 200 g m?2 mean annual ash-free dry weight) at all times of the year at intermediate depths of macrophytic growth (1–6 m). Two species of Chara (of eight varieties and forms) were present in significant quantities (12% of total biomass; to 100 g m?2) but were severely limited to shallow depths (0-S-l m) and protected areas. Several annual submersed angiosperms were present (9% of total biomass), but only two species were quantitatively important. Potamogeton illinoensis Morong. and P. praelongus Wulfen formed brief summer peaks (less than 100 g m?2) at 3 and 4–6 m, respectively. A striking feature of the seasonal biomass distribution of Scirpus subterminalis was the higher, viable biomass (to 150g m?2) throughout the winter under ice cover. Cyclic fluctuations of the S. subterminalis populations were discerned at different depths, each with different periodicities. The population at 2 m exhibited a fall peak; that at 4 m had a summer maximum. The lowest overall biomass of S. subterminalis occurred in the 2 m population in June. Chara populations at 0–2 m also exhibited a relatively constant biomass throughout the year. The appearance of Nitella at 7 m in July-October and of Chara at 5 m in September-October was interpreted as an interaction between light, thermal, and carbon stratification. Estimates of macrophytic productivity of perennial (‘evergreen’) species populations whose biomass remains relatively constant throughout the year were made employing several different methods of calculation and turnover factors. All methods resulted in productivity estimates in good agreement with the conservative value of 178 g m?2 year?1 for the entire lake. In comparison to the other components (phyto-planktonic, epiphytic and epipelic algae) of the primary production of Lawrence Lake, the aquatic macrophytes constituted a major portion (anuual mean 82·77 g C m?2 year?1 or 48·3 %) of the total production of the lake. The low diversity but relatively high quantitative importance of macrophytes in marl lakes is attributed to an adverse dissolved inorganic and organic chemical milieu which inhibits phytoplanktonic production and allows only certain adapted macrophytes to develop strongly. The phenomenon of perennial biomass levels throughout the year is believed to be much more common than previously suspected and has iikely resulted from adaptations of submersed macrophytes to ameliorated conditions of water and temperatures relative to the terrestrial situation in winter.  相似文献   

6.
Summary Phytoplankton primary production, biomass, species composition and sedimentation of organic matter (using a moored and a free drifting sediment trap) were measured in eastern Bransfield Strait during spring 1983. Biomass and primary production increased from low levels in late November (1 mgChla m-3 and 400 mgC m-2 d-1) to bloom levels by the end of December (5 mgChla m-3 and 1000 mgC m-2 d-1). The moored trap was deployed at 323 m depth for 22.5 days, and collected 2968 mgC and 67.6 mg chlorophyll a and derivatives per m2 (132 and 3.0 mg m-2 d-1), of which 90% was in the form of krill faeces. These figures are regarded as egestion of krill, and using ingestion: egestion ratios from the literature, grazing loss of phytoplankton by krill was estimated at 45% of the primary production during a period of 3 weeks. Large-scale surveys of phytoplankton standing stock indicate that the build-up of blooms during spring is apparently not controlled by krill grazing. It is therefore suggested that the intense grazing that must have occurred over the trap during the period of deployment was only of local importance.  相似文献   

7.
1. River metabolism was measured over an annual cycle at three sites distributed along a 1000 km length of the lowland Murray River, Australia. 2. Whole system metabolism was measured using water column changes in dissolved oxygen concentrations while planktonic and benthic metabolism were partitioned using light‐dark bottles and benthic chambers. 3. Annual gross primary production (GPP) ranged from 775 to 1126 g O2 m?2 year?1 which in comparison with rivers of similar physical characteristics is moderately productive. 4. Community respiration (CR) ranged from 872 to 1284 g O2 m?2 year?1 so that annual net ecosystem production (NEP) was near zero, suggesting photosynthesis and respiration were balanced and that allochthonous organic carbon played a minor role in fuelling metabolism. 5. Planktonic rates of gross photosynthesis and respiration were similar to those of the total channel, indicating that plankton were responsible for much of the observed metabolism. 6. Respiration rates correlated with phytoplankton standing crop (estimated as the sum of GPP plus the chlorophyll concentration in carbon units), yielding a specific respiration rate of ?1.1 g O2 g C?1 day?1. The respiration rate was equivalent to 19% of the maximum rate of phytoplankton photosynthesis, which is typical of diatoms. 7. The daily GPP per unit phytoplankton biomass correlated with the mean irradiance of the water column giving a constant carbon specific photon fixation rate of 0.35 gO2 g Chl a?1 day?1 per μmole photons m?2 s?1 (ca. 0.08 per mole photons m?2 on a carbon basis) indicating that light availability determined daily primary production. 8. Annual phytoplankton net production (NP) estimates at two sites indicated 25 and 36 g C m?2 year?1 were available to support riverine food webs, equivalent to 6% and 11% of annual GPP. 9. Metabolised organic carbon was predominantly derived from phytoplankton and was fully utilised, suggesting that food‐web production was restricted by the energy supply.  相似文献   

8.
1. Oligotrophic Lake Waikaremoana, New Zealand, is used for hydroelectric power generation and the lake levels are manipulated within an operating range of 3 m. There was concern that rapidly changing water levels adversely affected the littoral zone by decreasing light availability in two ways: local turbidity caused by shoreline erosion at low water levels; and decreased light penetration to the deep littoral zone caused by high water levels in summer. 2. The littoral zone was dominated by native aquatic plants with vascular species to 6 m and a characean meadow below this to 16 m. The biomass and heights of the communities in the depth zone 0–6 m were reduced at a site exposed to wave action relative to those at a sheltered site. However, the community structure below 6 m was similar at exposed and sheltered sites. The lower boundary of the littoral zone was sharply delimited at 16 m and this bottom boundary remained constant throughout the year despite large seasonal changes in solar radiation and the 3 m variation in lake level. 3. There was evidence that the deep-water community consisting of Chara corallina had adapted physiologically to low-light conditions. Net light saturated photosynthesis (CO2 exchange) per unit chlorophyll a (Chl a) was reduced to 1.7 μg C (μg Chl a)?1 h?1 at the lower boundary, half of that recorded at 5 m. The concentration of Chi a per gram of biomass (dry weight), was considerably greater at the lower boundary than higher in the profile [c. 7 mg Chl a (g dry wt)?1 at 16 m vs. 4 mg Chl a (g dry wt)?1 at 5 m]. Chl b also increased with depth and there was no change in the ratio of Chl a and Chl b with increasing depth. The saturation light intensity (Ik) of the community at the lower boundary was only 78 μmol photons m?2 s?1. Photosynthetic parameters (Ik and α) as well as the Chl a content remained relatively constant throughout the seasonal and short-term changes in radiation. 4. The photosynthetic characteristics of the littoral community were therefore not greatly affected by the lake level change caused by the present hydroelectric operations. However, the sharpness of the lower boundary and its extreme shade characteristics imply that the deep-water community would be sensitive to any further changes in underwater light availability.  相似文献   

9.
1. The effect of benthivorous bream and carp on sediment resuspension and the concentrations of nutrients and chlorophyll a were studied in sixteen experimental ponds (mean depth 1m, mean area 0.1 ha, sandy clay/clay sediment), stocked with bream or carp at densities varying from 0 to 500 kg ha?1. Planktivorous perch (Perca fluviatilis L.) were added to some ponds to suppress zooplankton. 2. Suspended sediment concentrations increased linearly with biomass of benthivorous fish. Bream caused an increase of 46 g sediment m?2 day?1 per 100kg bream ha?1 and a reduction of 0.38m?1 in reciprocal Secchi disc depth, corresponding to an increase in the extinction coefficient of 0.34m?1. 3. No relationship was found between size of fish and amount of resuspension, but the effect of bream was twice as great as that of carp. Benthivorous feeding was reduced in May because alternative food (zooplankton) was available. 4. Assuming a linear relationship, chlorophyll a level increased by 9.0 μgI?1, total P by 0.03mgl?1 and Kjeldahl-N by 0.48mgl?1 per 100kg bream ha?1. Silicate, chlorophyll a, total P and total N were all positively correlated with fish biomass, but orthophosphate showed no correlation.  相似文献   

10.
Young plants of Laminaria hyperborea collected from the field were grown for 2·5–4 weeks in blue, green, red and white (simulated underwater) light fields at 5, 20 and 100 μmol m-2s-1. The absolute concentrations of all pigments showed little variation with irradiance in green and white light, but decreased in high irradiances of red and blue light. The ratio of fucoxanthin to chlorophyll a also increased in the latter treatments, as did the chlorophyll c:a ratio in bright red light. There was little difference in the action spectrum for photosynthesis between the different light qualities at any one irradiance, but the action spectra for plants grown at 100 μmol m-2s-1 showed deeper troughs and higher peaks than those for plants grown at lower irradiances. Gross photosynthesis per unit of thallus area at 10 μmol m-2s-1 decreased in plants with low total pigment concentrations, but the photosynthesis per unit of pigment concentration increased. This suggestion of self-shading of pigment molecules within the algal thalli was supported by a flattening of the action spectrum in plants with higher chlorophyll a contents. The variations observed between the action spectra for different plants could thus be attributed to the decrease in pigment content at high irradiances, and not to the light quality in which the plants were grown.  相似文献   

11.
Coastal kelp forests produce substantial marine carbon due to high annual net primary production (NPP) rates, but upscaling of NPP estimates over time and space remains difficult. We investigated the impact of variable underwater photosynthetically active radiation (PAR) and photosynthetic parameters on photosynthetic oxygen production of Laminaria hyperborea, the dominant NE-Atlantic kelp species, throughout summer 2014. Collection depth of kelp had no effect on chlorophyll a content, pointing to a high photoacclimation potential of L. hyperborea towards incident light. However, chlorophyll a and photosynthesis versus irradiance parameters differed significantly along the blade gradient when normalized to fresh mass, potentially introducing large uncertainties in NPP upscaling to whole thalli. Therefore, we recommend a normalization to kelp tissue area, which is stable over the blade gradient. Continuous PAR measurements revealed a highly variable underwater light climate at our study site (Helgoland, North Sea) in summer 2014, reflected by PAR attenuation coefficients (Kd) between 0.28 and 0.87 m−1. Our data highlight the importance of continuous underwater light measurements or representative average values using a weighted Kd to account for large PAR variability in NPP calculations. Strong winds in August increased turbidity, resulting in a negative carbon balance at depths >3–4 m over several weeks, considerably impacting kelp productivity. Estimated daily summer NPP over all four depths was 1.48 ± 0.97 g C · m−2 seafloor · d−1 for the Helgolandic kelp forest, which is in the range of other kelp forests along European coastlines.  相似文献   

12.
1. Lough Neagh is a large eutrophic lake covering 387 km2 with a mean depth of 8.9 m. It is an important natural resource, being the largest single source of potable water for Belfast, Northern Ireland. 2. This report examines the causes of the year-to-year variation in the April–June (spring) algal biomass, measured as chlorophyll a, for the period 1974–92. 3. The spring chlorophyll a declined following the introduction of a phosphorus (P) reduction programme at major sewage treatment works in 1981. However, since 1990 the chlorophyll a concentrations in the spring have increased. 4. Time series methodology was employed to develop a model which explained 76% of the annual variation in spring chlorophyll a concentrations. 5. The independent variables used in the multiple regression model were the previous year’s spring chlorophyll a concentration, soluble reactive P inputs for April–June and the particulate P concentration in the Lough during the previous summer.  相似文献   

13.
The irradiance reaching Nitella at 11.5 m depths was almost the same during three years: 1000 cal cm−2 year−1 PAR, or 2.2% of the surface irradiance PAR. Green light (500–600 nm) constituted most (62–88%) of the irradiance on Nitella. Net photosynthesis by Nitella was linearly correlated to irradiance. Nitella had a positive oxygen balance from mid-May to late September and a minor negative one at other times. The annual turnover of biomass was potentially high, and the dark-respiration was very important in the metabolic balance. The contribution of Nitella to total autotrophic production and to oxygen conditions in the hypolimnion is discussed.  相似文献   

14.
1. Abundance and bacterial production (BP) of heterotrophic bacteria (HBact) were measured in the north and south basins of Lake Tanganyika, East Africa, during seasonal sampling series between 2002 and 2007. The major objective of the study was to assess whether BP can supplement phytoplankton particulate primary production (particulate PP) in the pelagic waters, and whether BP and particulate PP are related in this large lake. HBact were enumerated in the 0–100 m surface layer by epifluorescence microscopy and flow cytometry; BP was quantified using 3H‐thymidine incorporation, usually in three mixolimnion layers (0–40, 40–60 and 60–100 m). 2. Flow cytometry allowed three subpopulations to be distinguished: low nucleic acid content bacteria (LNA), high nucleic acid content bacteria (HNA) and Synechococcus‐like picocyanobacteria (PCya). The proportion of HNA was on average 67% of total bacterial abundance, and tended to increase with depth. HBact abundance was between 1.2 × 105 and 4.8 × 106 cells mL−1, and was maximal in the 0–40 m layer (i.e. roughly, the euphotic layer). Using a single conversion factor of 15 fg C cell−1, estimated from biovolume measurements, average HBact biomass (integrated over a 100‐m water column depth) was 1.89 ± 1.05 g C m−2. 3. Significant differences in BP appeared between seasons, especially in the south basin. The range of BP integrated over the 0–100 m layer was 93–735 mg C m−2 day−1, and overlapped with the range of particulate PP (150–1687 mg C m−2 day−1) measured in the same period of time at the same sites. 4. Depth‐integrated BP was significantly correlated to particulate PP and chlorophyll‐a, and BP in the euphotic layer was on average 25% of PP. 5. These results suggest that HBact contribute substantially to the particulate organic carbon available to consumers in Lake Tanganyika, and that BP may be sustained by phytoplankton‐derived organic carbon in the pelagic waters.  相似文献   

15.
During summer 2007, Arctic microphytobenthic potential primary production was measured at several stations around the coastline of Kongsfjorden (Svalbard, Norway) at ≤5 m water depth and at two stations at five different water depths (5, 10, 15, 20, 30 m). Oxygen planar optode sensor spots were used ex situ to determine oxygen exchange in the overlying water of intact sediment cores under controlled light (ca. 100 μmol photons m−2 s−1) and temperature (2–4°C) conditions. Patches of microalgae (mainly diatoms) covering sandy sediments at water depths down to 30 m showed high biomass of up to 317 mg chl a m−2. In spite of increasing water depth, no significant trend in “photoautotrophic active biomass” (chl a, ratio living/dead cells, cell sizes) and, thus, in primary production was measured at both stations. All sites from ≤5 to 30 m water depth exhibited variable rates of net production from −19 to +40 mg O2 m−2 h−1 (−168 to +360 mg C m−2 day−1) and gross production of about 2–62 mg O2 m−2 h−1 (17–554 mg C m−2 day−1), which is comparable to other polar as well as temperate regions. No relation between photoautotrophic biomass and gross/net production values was found. Microphytobenthos demonstrated significant rates of primary production that is comparable to pelagic production of Kongsfjorden and, hence, emphasised the importance as C source for the zoobenthos.  相似文献   

16.
Thysanoessa macrura was found throughout Gerlache Strait, Antarctica, during four surveys carried out from 30 October to 23 November 1989, with the highest abundance being 332 individuals m–2 (0–290 m). Reproduction had begun just before the surveys took place, as indicated by the presence of females with attached spermatophores and of larvae. Thirteen-month old females were reproductive. Larvae in 9 depth strata between 0–290 m were dominated by calyptopis stages, and developed from calyptopis 1 to furcilia 1 during November. Larval abundance was not correlated to chlorophyll a concentration, which showed a consistent east-west gradient in Gerlache Strait with highest concentrations (>30 mg chlorophyll a m–3) in bays of the Antarctic Peninsula. Survival of larvae appeared to not be affected by phytoplankton abundance. Older T. macrura showed strong diel vertical migration between the surface at night and depths to 120 m during mid-day. Larvae were consistently found in the chlorophyll a-rich upper 50 m during night (90%) and day (81%), while adults and juveniles were found in the upper 50m at night (83%), but only 16% remained there during the day.  相似文献   

17.
Summary A SCUBA-diving survey of the macrobenthos of hard substrata in the sublittoral zone at subantarctic Marion Island was conducted during March and April 1988. Dense beds (12 kg m–2) of the kelp Macrocystis laevis occur in depths > 5 m. Durvillaea antarctica is found along the infralittoral fringe and Desmarestia rossi and Durvillaea sp. occur in a narrow zone from 3 m–6 m. Under-storey algae (chiefly rhodophytes) tend to decrease in biomass with depth, with mean values of 1.57 kg m–2 at 5m, 0.75 kg m–2 at 10m and 0.49 kg m–2 at 15 m. Encrusting coralline algae are particularly abundant in shallow areas (¯x = 0.92 kg m–2) but are insignificant in deeper areas. Total biomass of macrozoobenthos increased with depth with mean values of 0.12 kg m–2 at 5 m, 0.34 kg m–2 at 10 m and 0.46 kg m–2 at 15 m. Polychaetes, crustaceans, echinoderms, molluscs, sponges and bryozoans dominated the macrozoobenthos in terms of biomass. Approximately 200 species of macrobenthic animals were recorded and numerically, polychaetes, crustaceans, molluscs, nematodes and echinoderms dominated. The sublittoral benthos at Marion Island is compared with that occurring at other subantarctic and Antarctic islands, in particular, the Kerguelen Island group. Zoogeographic trends and the possible effects of nutrient input from seabird guano are briefly discussed.  相似文献   

18.
Profiles of 15N2 fixation, O2 production (gross photosynthesis), O2 concentration, chlorophyll a concentration, and photon fluence rates were measured with 50-μm resolution in colonies of the heterocyst-forming cyanobacterium Nostoc parmelioides. Microelectrode measurements were made after 20 h of incubation under 15N2 gas. Colonies were frozen, and 50-μm sections were prepared by using a freezing microtome and analyzed for 15N enrichment and chlorophyll a concentration. Colonies exhibited steep spatial gradients in rates of gross photosynthesis, O2 concentration, and irradiance, with the highest values generally occurring at the surface. O2 concentration, photosynthesis, and irradiance all showed positive correlations, but chlorophyll a concentrations varied independently of photosynthesis and irradiance. Forty-four percent of the variation in 15N incorporation was explained by gross photosynthesis (a positive correlation) when incorporation of 15N was expressed per unit of biomass (chlorophyll a).  相似文献   

19.
 Phytoplankton biomass, community structure and productivity of the Great Astrolabe lagoon and surrounding ocean were studied using measurements of chlorophyll concentration and carbon uptake. The contribution of picophytoplankton to biomass, productivity and community structure was estimated by size fractionation, 14C-incubation and flow cytometry analysis. Picoplankton red fluorescence was demonstrated to be a proxy for chlorophyll <3 μm. Consequently, the percentage contribution to chl a<3 μm from each picoplankton group could be calculated using regression estimated values of ψ i (fg chl a per unit of red fluorescence). In the lagoon, average chlorophyll concentration was 0.8 mg m-3 with 45% of phytoplankton <3 μm. Primary production reached 1.3 g C m-2 day-1 with 53% due to phytoplankton <3 μm. Synechococcus was the most abundant group at all stations, followed by Prochlorococcus and picoeukaryotes. At all stations, Prochlorococcus represented less than 4% of the chl a <3 μm, Synechococcus between 85 and 95%, and Picoeukaryotes between 5 and 10%. In the upper 40 m of surrounding oceanic waters, phytoplankton biomass was dominated by the >3 μm size fraction. In deeper water, the <1 μm size fraction dominated. Prochlorococcus was the most abundant picoplankton group and their contributions to the chlorophyll a<3 μm were close to that of the picoeukaryotes (50% each). Accepted: 27 May 1999  相似文献   

20.
The distribution, abundance and standing crop biomass of chironomid larvae were determined at one-meter depth intervals along three radial transects. Samples were collected by coring soft sediments while diving. Three genera were found in the lake: Chironomus sp. (collector-filtering larvae), Ablabesmyia sp. (predatory larvae) and Goeldichironomus sp. (collector-filtering larvae). Standing crop densities of chironomids, averaged over the entire lake, varied from 30,594 larvae/m2 to 11,428 larvae/m2 at different depths. No statistically significant zonation in density was found for the two most common taxa, Chironomus sp. (87.8% of specimens) and Ablabesmyia sp. (9.0%), however the deepest zones (>4 m) had the lowest estimated densities. Significant differences in standing crop biomass were detected, with the 6 m depth having greatest biomass. The increase in standing crop biomass was a function of (1) lower frequency of first instars of Chironomus sp. and Ablabesmyia sp. at 6 m (2) higher average larval biomass of both species at 6 m and (3) very significant increase in average biomass of fourth instars of Chironomus sp. at 6 m compared to fourth instars at shallower depths. These results indicate that the lentic chironomids of this isolated oceanic habitat consist of a small number of species that are ecological generalists and tolerant of low oxygen concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号