首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rodenberg C  Zhou XH 《Biometrics》2000,56(4):1256-1262
A receiver operating characteristic (ROC) curve is commonly used to measure the accuracy of a medical test. It is a plot of the true positive fraction (sensitivity) against the false positive fraction (1-specificity) for increasingly stringent positivity criterion. Bias can occur in estimation of an ROC curve if only some of the tested patients are selected for disease verification and if analysis is restricted only to the verified cases. This bias is known as verification bias. In this paper, we address the problem of correcting for verification bias in estimation of an ROC curve when the verification process and efficacy of the diagnostic test depend on covariates. Our method applies the EM algorithm to ordinal regression models to derive ML estimates for ROC curves as a function of covariates, adjusted for covariates affecting the likelihood of being verified. Asymptotic variance estimates are obtained using the observed information matrix of the observed data. These estimates are derived under the missing-at-random assumption, which means that selection for disease verification depends only on the observed data, i.e., the test result and the observed covariates. We also address the issues of model selection and model checking. Finally, we illustrate the proposed method on data from a two-phase study of dementia disorders, where selection for verification depends on the screening test result and age.  相似文献   

2.
Liu D  Zhou XH 《Biometrics》2011,67(3):906-916
Covariate-specific receiver operating characteristic (ROC) curves are often used to evaluate the classification accuracy of a medical diagnostic test or a biomarker, when the accuracy of the test is associated with certain covariates. In many large-scale screening tests, the gold standard is subject to missingness due to high cost or harmfulness to the patient. In this article, we propose a semiparametric estimation of the covariate-specific ROC curves with a partial missing gold standard. A location-scale model is constructed for the test result to model the covariates' effect, but the residual distributions are left unspecified. Thus the baseline and link functions of the ROC curve both have flexible shapes. With the gold standard missing at random (MAR) assumption, we consider weighted estimating equations for the location-scale parameters, and weighted kernel estimating equations for the residual distributions. Three ROC curve estimators are proposed and compared, namely, imputation-based, inverse probability weighted, and doubly robust estimators. We derive the asymptotic normality of the estimated ROC curve, as well as the analytical form of the standard error estimator. The proposed method is motivated and applied to the data in an Alzheimer's disease research.  相似文献   

3.
Xing G  Lin CY  Xing C 《Human heredity》2011,72(3):194-205
A common technique to control for confounding factors in practice is by regression adjustment. There are various versions of regression modeling in the literature, and in this paper we considered four approaches often seen in genetic association studies. We carried out both analytical and simulation studies comparing the bias of effect size estimates and examining the test sizes under the null hypothesis of no association between an outcome and an exposure. Further, we compared the methods in a nonsynonymous genome-wide scan for plasma lipoprotein(a) levels using a dataset from the Dallas Heart Study. We found that a widely employed approach that models the covariate-adjusted outcome and the exposure leads to an infranominal test size and underestimation of the exposure effect size. In conclusion, we recommend either using multiple regression models or modeling the covariate-adjusted outcome and the covariate-adjusted exposure to control for confounding factors.  相似文献   

4.
An estimated quadratic inference function method is proposed for correlated failure time data with auxiliary covariates. The proposed method makes efficient use of the auxiliary information for the incomplete exposure covariates and preserves the property of the quadratic inference function method that requires the covariates to be completely observed. It can improve the estimation efficiency and easily deal with the situation when the cluster size is large. The proposed estimator which minimizes the estimated quadratic inference function is shown to be consistent and asymptotically normal. A chi-squared test based on the estimated quadratic inference function is proposed to test hypotheses about the regression parameters. The small-sample performance of the proposed method is investigated through extensive simulation studies. The proposed method is then applied to analyze the Study of Left Ventricular Dysfunction (SOLVD) data as an illustration.  相似文献   

5.
MOTIVATION: It is important to predict the outcome of patients with diffuse large-B-cell lymphoma after chemotherapy, since the survival rate after treatment of this common lymphoma disease is <50%. Both clinically based outcome predictors and the gene expression-based molecular factors have been proposed independently in disease prognosis. However combining the high-dimensional genomic data and the clinically relevant information to predict disease outcome is challenging. RESULTS: We describe an integrated clinicogenomic modeling approach that combines gene expression profiles and the clinically based International Prognostic Index (IPI) for personalized prediction in disease outcome. Dimension reduction methods are proposed to produce linear combinations of gene expressions, while taking into account clinical IPI information. The extracted summary measures capture all the regression information of the censored survival phenotype given both genomic and clinical data, and are employed as covariates in the subsequent survival model formulation. A case study of diffuse large-B-cell lymphoma data, as well as Monte Carlo simulations, both demonstrate that the proposed integrative modeling improves the prediction accuracy, delivering predictions more accurate than those achieved by using either clinical data or molecular predictors alone.  相似文献   

6.
Lloyd CJ 《Biometrics》2000,56(3):862-867
The performance of a diagnostic test is summarized by its receiver operating characteristic (ROC) curve. Under quite natural assumptions about the latent variable underlying the test, the ROC curve is convex. Empirical data on a test's performance often comes in the form of observed true positive and false positive relative frequencies under varying conditions. This paper describes a family of regression models for analyzing such data. The underlying ROC curves are specified by a quality parameter delta and a shape parameter mu and are guaranteed to be convex provided delta > 1. Both the position along the ROC curve and the quality parameter delta are modeled linearly with covariates at the level of the individual. The shape parameter mu enters the model through the link functions log(p mu) - log(1 - p mu) of a binomial regression and is estimated either by search or from an appropriate constructed variate. One simple application is to the meta-analysis of independent studies of the same diagnostic test, illustrated on some data of Moses, Shapiro, and Littenberg (1993). A second application, to so-called vigilance data, is given, where ROC curves differ across subjects and modeling of the position along the ROC curve is of primary interest.  相似文献   

7.
We present a parametric family of regression models for interval-censored event-time (survival) data that accomodates both fixed (e.g. baseline) and time-dependent covariates. The model employs a three-parameter family of survival distributions that includes the Weibull, negative binomial, and log-logistic distributions as special cases, and can be applied to data with left, right, interval, or non-censored event times. Standard methods, such as Newton-Raphson, can be employed to estimate the model and the resulting estimates have an asymptotically normal distribution about the true values with a covariance matrix that is consistently estimated by the information function. The deviance function is described to assess model fit and a robust sandwich estimate of the covariance may also be employed to provide asymptotically robust inferences when the model assumptions do not apply. Spline functions may also be employed to allow for non-linear covariates. The model is applied to data from a long-term study of type 1 diabetes to describe the effects of longitudinal measures of glycemia (HbA1c) over time (the time-dependent covariate) on the risk of progression of diabetic retinopathy (eye disease), an interval-censored event-time outcome.  相似文献   

8.
Summary A treatment regime is a rule that assigns a treatment, among a set of possible treatments, to a patient as a function of his/her observed characteristics, hence “personalizing” treatment to the patient. The goal is to identify the optimal treatment regime that, if followed by the entire population of patients, would lead to the best outcome on average. Given data from a clinical trial or observational study, for a single treatment decision, the optimal regime can be found by assuming a regression model for the expected outcome conditional on treatment and covariates, where, for a given set of covariates, the optimal treatment is the one that yields the most favorable expected outcome. However, treatment assignment via such a regime is suspect if the regression model is incorrectly specified. Recognizing that, even if misspecified, such a regression model defines a class of regimes, we instead consider finding the optimal regime within such a class by finding the regime that optimizes an estimator of overall population mean outcome. To take into account possible confounding in an observational study and to increase precision, we use a doubly robust augmented inverse probability weighted estimator for this purpose. Simulations and application to data from a breast cancer clinical trial demonstrate the performance of the method.  相似文献   

9.
Carrasco JL  Jover L 《Biometrics》2003,59(4):849-858
The intraclass correlation coefficient (ICC) and the concordance correlation coefficient (CCC) are two of the most popular measures of agreement for variables measured on a continuous scale. Here, we demonstrate that ICC and CCC are the same measure of agreement estimated in two ways: by the variance components procedure and by the moment method. We propose estimating the CCC using variance components of a mixed effects model, instead of the common method of moments. With the variance components approach, the CCC can easily be extended to more than two observers, and adjusted using confounding covariates, by incorporating them in the mixed model. A simulation study is carried out to compare the variance components approach with the moment method. The importance of adjusting by confounding covariates is illustrated with a case example.  相似文献   

10.
VanderWeele TJ  Shpitser I 《Biometrics》2011,67(4):1406-1413
Summary We propose a new criterion for confounder selection when the underlying causal structure is unknown and only limited knowledge is available. We assume all covariates being considered are pretreatment variables and that for each covariate it is known (i) whether the covariate is a cause of treatment, and (ii) whether the covariate is a cause of the outcome. The causal relationships the covariates have with one another is assumed unknown. We propose that control be made for any covariate that is either a cause of treatment or of the outcome or both. We show that irrespective of the actual underlying causal structure, if any subset of the observed covariates suffices to control for confounding then the set of covariates chosen by our criterion will also suffice. We show that other, commonly used, criteria for confounding control do not have this property. We use formal theory concerning causal diagrams to prove our result but the application of the result does not rely on familiarity with causal diagrams. An investigator simply need ask, “Is the covariate a cause of the treatment?” and “Is the covariate a cause of the outcome?” If the answer to either question is “yes” then the covariate is included for confounder control. We discuss some additional covariate selection results that preserve unconfoundedness and that may be of interest when used with our criterion.  相似文献   

11.
State‐space models (SSMs) are a popular tool for modeling animal abundances. Inference difficulties for simple linear SSMs are well known, particularly in relation to simultaneous estimation of process and observation variances. Several remedies to overcome estimation problems have been studied for relatively simple SSMs, but whether these challenges and proposed remedies apply for nonlinear stage‐structured SSMs, an important class of ecological models, is less well understood. Here we identify improvements for inference about nonlinear stage‐structured SSMs fit with biased sequential life stage data. Theoretical analyses indicate parameter identifiability requires covariates in the state processes. Simulation studies show that plugging in externally estimated observation variances, as opposed to jointly estimating them with other parameters, reduces bias and standard error of estimates. In contrast to previous results for simple linear SSMs, strong confounding between jointly estimated process and observation variance parameters was not found in the models explored here. However, when observation variance was also estimated in the motivating case study, the resulting process variance estimates were implausibly low (near‐zero). As SSMs are used in increasingly complex ways, understanding when inference can be expected to be successful, and what aids it, becomes more important. Our study illustrates (a) the need for relevant process covariates and (b) the benefits of using externally estimated observation variances for inference about nonlinear stage‐structured SSMs.  相似文献   

12.
13.
Guanglei Hong  Fan Yang  Xu Qin 《Biometrics》2023,79(2):1042-1056
In causal mediation studies that decompose an average treatment effect into indirect and direct effects, examples of posttreatment confounding are abundant. In the presence of treatment-by-mediator interactions, past research has generally considered it infeasible to adjust for a posttreatment confounder of the mediator–outcome relationship due to incomplete information: for any given individual, a posttreatment confounder is observed under the actual treatment condition while missing under the counterfactual treatment condition. This paper proposes a new sensitivity analysis strategy for handling posttreatment confounding and incorporates it into weighting-based causal mediation analysis. The key is to obtain the conditional distribution of the posttreatment confounder under the counterfactual treatment as a function of not only pretreatment covariates but also its counterpart under the actual treatment. The sensitivity analysis then generates a bound for the natural indirect effect and that for the natural direct effect over a plausible range of the conditional correlation between the posttreatment confounder under the actual and that under the counterfactual conditions. Implemented through either imputation or integration, the strategy is suitable for binary as well as continuous measures of posttreatment confounders. Simulation results demonstrate major strengths and potential limitations of this new solution. A reanalysis of the National Evaluation of Welfare-to-Work Strategies (NEWWS) Riverside data reveals that the initial analytic results are sensitive to omitted posttreatment confounding.  相似文献   

14.

Summary

Omission of relevant covariates can lead to bias when estimating treatment or exposure effects from survival data in both randomized controlled trials and observational studies. This paper presents a general approach to assessing bias when covariates are omitted from the Cox model. The proposed method is applicable to both randomized and non‐randomized studies. We distinguish between the effects of three possible sources of bias: omission of a balanced covariate, data censoring and unmeasured confounding. Asymptotic formulae for determining the bias are derived from the large sample properties of the maximum likelihood estimator. A simulation study is used to demonstrate the validity of the bias formulae and to characterize the influence of the different sources of bias. It is shown that the bias converges to fixed limits as the effect of the omitted covariate increases, irrespective of the degree of confounding. The bias formulae are used as the basis for developing a new method of sensitivity analysis to assess the impact of omitted covariates on estimates of treatment or exposure effects. In simulation studies, the proposed method gave unbiased treatment estimates and confidence intervals with good coverage when the true sensitivity parameters were known. We describe application of the method to a randomized controlled trial and a non‐randomized study.  相似文献   

15.
We propose an extension to the estimating equations in generalized linear models to estimate parameters in the link function and variance structure simultaneously with regression coefficients. Rather than focusing on the regression coefficients, the purpose of these models is inference about the mean of the outcome as a function of a set of covariates, and various functionals of the mean function used to measure the effects of the covariates. A commonly used functional in econometrics, referred to as the marginal effect, is the partial derivative of the mean function with respect to any covariate, averaged over the empirical distribution of covariates in the model. We define an analogous parameter for discrete covariates. The proposed estimation method not only helps to identify an appropriate link function and to suggest an underlying distribution for a specific application but also serves as a robust estimator when no specific distribution for the outcome measure can be identified. Using Monte Carlo simulations, we show that the resulting parameter estimators are consistent. The method is illustrated with an analysis of inpatient expenditure data from a study of hospitalists.  相似文献   

16.
Cong XJ  Yin G  Shen Y 《Biometrics》2007,63(3):663-672
We consider modeling correlated survival data when cluster sizes may be informative to the outcome of interest based on a within-cluster resampling (WCR) approach and a weighted score function (WSF) method. We derive the large sample properties for the WCR estimators under the Cox proportional hazards model. We establish consistency and asymptotic normality of the regression coefficient estimators, and the weak convergence property of the estimated baseline cumulative hazard function. The WSF method is to incorporate the inverse of cluster sizes as weights in the score function. We conduct simulation studies to assess and compare the finite-sample behaviors of the estimators and apply the proposed methods to a dental study as an illustration.  相似文献   

17.
The development of multimetric indices (MMIs) as a means of providing integrative measures of ecosystem condition is becoming widespread. An increasingly recognized problem for the interpretability of MMIs is controlling for the potentially confounding influences of environmental covariates. Most common approaches to handling covariates are based on simple notions of statistical control, leaving the causal implications of covariates and their adjustment unstated. In this paper, we use graphical models to examine some of the potential impacts of environmental covariates on the observed signals between human disturbance and potential response metrics. Using simulations based on various causal networks, we show how environmental covariates can both obscure and exaggerate the effects of human disturbance on individual metrics. We then examine from a causal interpretation standpoint the common practice of adjusting ecological metrics for environmental influences using only the set of sites deemed to be in reference condition. We present and examine the performance of an alternative approach to metric adjustment that uses the whole set of sites and models both environmental and human disturbance effects simultaneously. The findings from our analyses indicate that failing to model and adjust metrics can result in a systematic bias towards those metrics in which environmental covariates function to artificially strengthen the metric–disturbance relationship resulting in MMIs that do not accurately measure impacts of human disturbance. We also find that a “whole-set modeling approach” requires fewer assumptions and is more efficient with the given information than the more commonly applied “reference-set” approach.  相似文献   

18.
Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available “indiCAR” model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log‐linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non‐log‐linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth‐indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two‐step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth‐indiCAR through simulation. Our results indicate that the smooth‐indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia.  相似文献   

19.
Mathews WC  Agmas W  Cachay E 《PloS one》2011,6(9):e24946

Background

The accuracy of screening for anal cancer precursors relative to screening for cervical cancer precursors has not been systematically examined. The aim of the current meta-analysis was to compare the relative accuracy of anal cytology to cervical cytology in discriminating between histopathologic high grade and lesser grades of dysplasia when the reference standard biopsy is obtained using colposcope magnification.

Methods and Findings

The outcome metric of discrimination was the receiver operating characteristic (ROC) curve area. Random effects meta-analysis of eligible studies was performed with examination of sources of heterogeneity that included QUADAS criteria and selected covariates, in meta-regression models. Thirty three cervical and eleven anal screening studies were found to be eligible. The primary meta-analytic comparison suggested that anal cytologic screening is somewhat less discriminating than cervical cytologic screening (ROC area [95% confidence interval (C.I.)]: 0.834 [0.809–0.859] vs. 0.700 [0.664–0.735] for cervical and anal screening, respectively). This finding was robust when examined in meta-regression models of covariates differentially distributed by screening setting (anal, cervical).

Conclusions

Anal cytologic screening is somewhat less discriminating than cervical cytologic screening. Heterogeneity of estimates within each screening setting suggests that other factors influence estimates of screening accuracy. Among these are sampling and interpretation errors involving both cytology and biopsy as well as operator skill and experience.  相似文献   

20.
Ross EA  Moore D 《Biometrics》1999,55(3):813-819
We have developed methods for modeling discrete or grouped time, right-censored survival data collected from correlated groups or clusters. We assume that the marginal hazard of failure for individual items within a cluster is specified by a linear log odds survival model and the dependence structure is based on a gamma frailty model. The dependence can be modeled as a function of cluster-level covariates. Likelihood equations for estimating the model parameters are provided. Generalized estimating equations for the marginal hazard regression parameters and pseudolikelihood methods for estimating the dependence parameters are also described. Data from two clinical trials are used for illustration purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号