首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Age is the main risk factor for the prevalent diseases of?developed countries: cancer, cardiovascular disease and?neurodegeneration. The ageing process is deleterious for fitness, but can nonetheless evolve as a consequence of the declining force of natural selection at later ages, attributable to extrinsic hazards to survival: ageing can then occur as a side-effect of accumulation of mutations that lower fitness at later ages, or of natural selection in favour of mutations that increase fitness of the young but?at the cost of a higher subsequent rate of ageing. Once thought of as an inexorable, complex and lineage-specific process of accumulation of damage, ageing has turned out to be influenced by mechanisms that show strong evolutionary conservation. Lowered activity of the nutrient-sensing insulin/insulin-like growth factor/Target of Rapamycin signalling network can extend healthy lifespan in yeast, multicellular invertebrates, mice and, possibly, humans. Mitochondrial activity can also promote?ageing, while genome maintenance and autophagy?can protect against it. We discuss the relationship between evolutionarily conserved mechanisms of ageing and disease, and the associated scientific challenges and opportunities.  相似文献   

2.
There is tremendous diversity in ageing rates and lifespan not only among taxa but within species, and particularly between the sexes. Women often live longer than men, and considerable research on this topic has revealed some of the potential biological, psychological and cultural causes of sex differences in human ageing and lifespan. However, sex differences in lifespan are widespread in nonhuman animals suggesting biology plays a prominent role in variation in ageing and lifespan. Recently, evolutionary biologists have borrowed techniques from biomedicine to identify whether similar mechanisms causing or contributing to variation in ageing and lifespan in humans and laboratory animals also operate in wild animals. Telomeres are repetitive noncoding DNA sequences capping the ends of chromosomes that are important for chromosomal stability but that can shorten during normal cell division and exposure to stress. Telomere shortening is hypothesized to directly contribute to the ageing process as once telomeres shorten to some length, the cells stop dividing and die. Men tend to have shorter telomeres and faster rates of telomere attrition with age than women, suggesting one possible biological cause of sex differences in lifespan. In this issue of Molecular Ecology, Watson et al. ( 2017 ) show that telomere lengths in wild Soay sheep are similar between females and males near the beginning of life but quickly diverge with age because males but not females showed reduced telomere lengths at older ages. The authors further show that some of the observed sex difference in telomere lengths in old age may be due to male investment in horn growth earlier in life, suggesting that sexually dimorphic allocation to traits involved in sexual selection might underlie sex differences in telomere attrition. This study provides a rare example of how biological mechanisms potentially contributing to sex differences in lifespan in humans may also operate in free‐living animals. However, future studies using a longitudinal approach are necessary to confirm these observations and identify the ultimate and proximate causes of any sex differences in telomere lengths. Collaborations between evolutionary biologists and gerontologists are especially needed to identify whether telomere lengths have a causal role in ageing, particularly in natural conditions, and whether this directly contributes to sex differences in lifespan.  相似文献   

3.
4.
5.
By the mid 1970s, the mechanisms by which ageing can evolve had a secure theoretical basis in population genetics. Here, we discuss how subsequent evolutionary work has focussed on testing and extending this theory, and on attempting to integrate it with other emerging facets of the biology of ageing, such as genetic studies of long-lived mutants and of phenotypic plasticity in ageing, such as in response to nutritional status. We also describe how functional genomic studies are providing new insights into the evolutionary forces shaping genome evolution and lifespan control. Future challenges include understanding the biochemistry of longevity and how its failure generates ageing and associated diseases, and the determination of the genetic basis of lifespan evolution and the great plasticity that it displays.  相似文献   

6.
Paaby AB  Schmidt PS 《PloS one》2008,3(4):e1987

Background

Longevity and age-specific patterns of mortality are complex traits that vary within and among taxa. Multiple candidate genes for aging have been identified in model systems by extended longevity mutant phenotypes, including the G-protein coupled receptor methuselah (mth) in D. melanogaster. These genes offer important insights into the mechanisms of lifespan determination and have been major targets of interest in the biology of aging. However, it is largely unknown whether these genes contribute to genetic variance for lifespan in natural populations, and consequently contribute to lifespan evolution.

Methodology/Principle Findings

For a gene to contribute to genetic variance for a particular trait, it must meet two criteria: natural allelic variation and functional differences among variants. Previous work showed that mth varies significantly among wild populations; here we assess the functional significance of wild-derived mth alleles on lifespan, fecundity and stress resistance using a quantitative complementation scheme. Our results demonstrate that mth alleles segregating in nature have a functional effect on all three traits.

Conclusions/Significance

These results suggest that allelic variation at mth contributes to observed differences in lifespan and correlated phenotypes in natural populations, and that evaluation of genetic diversity at candidate genes for aging can be a fruitful approach to identifying loci contributing to lifespan evolution.  相似文献   

7.
The appearance of heritable resistance to herbicides in weeds is an evolutionary process driven by human selection. Assuming that spontaneous and random mutations originate herbicide resistance genes, which are selected by selection pressure imposed by herbicides, is the simplest model to understand how this phenomenon appears and increases in weed populations. However, the rate of herbicide resistance evolution is not only determined by the amount of genetic variation within the populations and the selection pressure exerted by herbicides, but also by factors related to genetics, biology and ecology of weeds. The inheritance of the resistance genes, the mating patterns of the populations, the relative fitness of susceptible and resistant phenotypes and gene flow processes also control the mentioned rate. Many cool season grasses are often infected by fungal symbiotic endophytes (Neotyphodium spp.). These organisms modify the physiology, ecology and reproductive biology of their hosts, conferring greater tolerance to biotic and abiotic stresses, greater competitive ability and the capacity of reducing ecosystem biodiversity. In this work, we present new empirical data and propose new theoretical support on how these microbial symbionts can modulate the evolution of herbicide resistance in weeds. Fungal endophytes are vertically transmitted, and may act as genetic entities altering the evolution of herbicide resistance by reducing herbicide efficacy (delaying effect on evolution). In addition, indirect evidence suggests that fungal endophytes might reduce the fitness penalty associated with the newly arisen resistant phenotypes. The importance and dynamic of these opposite effects is discussed.  相似文献   

8.
Ageing is defined by the loss of functional reserve over time, leading to a decreased capacity to maintain homeostasis under stress and increased risk of morbidity and mortality. Ageing is extremely heterogeneous between individuals and even between tissues within an organism, making it challenging to identify the molecular basis of ageing. Much of our current understanding of ageing comes from genetic studies in model organisms seeking genes that either accelerate or decelerate the ageing process. These studies revealed not only causes of ageing, but also signaling mechanisms that both promote and protect against ageing. In all cases, the signaling pathways that influence lifespan are familiar mechanisms that regulate cellular metabolism, growth, proliferation, differentiation and survival. This review highlights the significant overlap in signaling mechanisms implicated in both the cellular response to genotoxic stress and regulation of organism lifespan.  相似文献   

9.
Gami MS  Wolkow CA 《Aging cell》2006,5(1):31-37
Much excitement has arisen from the observation that decrements in insulin‐like signaling can dramatically extend lifespan in the nematode, Caenorhabditis elegans, and fruitfly, Drosophila melanogaster. In addition, there are tantalizing hints that the IGF‐I pathway in mice may have similar effects. In addition to dramatic effects on lifespan, invertebrate insulin‐like signaling also promotes changes in stress resistance, metabolism and development. Which, if any, of the various phenotypes of insulin pathway mutants are relevant to longevity? What are the genes that function in collaboration with insulin to prolong lifespan? These questions are at the heart of current research in C. elegans longevity. Two main theories exist as to the mechanism behind insulin's effects on invertebrate longevity. One theory is that insulin programs metabolic parameters that prolong or reduce lifespan. The other theory is that insulin determines the cell's ability to endure oxidative stress from respiration, thereby determining the rate of aging. However, these mechanisms are not mutually exclusive and several studies seem to support a role for both. Here, we review recently published reports investigating the mechanisms behind insulin's dramatic effect on longevity. We also spotlight several C. elegans genes that are now known to interact with insulin signaling to determine lifespan. These insights into pathways affecting invertebrate lifespan may provide a basis for developing strategies for pharmacological manipulation of human lifespan.  相似文献   

10.
Selection in novel environments can lead to a coordinated evolutionary response across a suite of characters. Environmental conditions can also potentially induce changes in the genetic architecture of complex traits, which in turn could alter the pattern of the multivariate response to selection. We describe a factorial selection experiment using the nematode Caenorhabditis remanei in which two different stress‐related phenotypes (heat and oxidative stress resistance) were selected under three different environmental conditions. The pattern of covariation in the evolutionary response between phenotypes or across environments differed depending on the environment in which selection occurred, including asymmetrical responses to selection in some cases. These results indicate that variation in pleiotropy across the stress response network is highly sensitive to the external environment. Our findings highlight the complexity of the interaction between genes and environment that influences the ability of organisms to acclimate to novel environments. They also make clear the need to identify the underlying genetic basis of genetic correlations in order understand how patterns of pleiotropy are distributed across complex genetic networks.  相似文献   

11.
In Caenorhabditis elegans, longevity is increased by a partial loss‐of‐function mutation in the mitochondrial complex III subunit gene isp‐1. Longevity is also increased by RNAi against the expression of a variety of mitochondrial respiratory chain genes, including isp‐1, but it is unknown whether the isp‐1(qm150) mutation and the RNAi treatments trigger the same underlying mechanisms of longevity. We have identified nuo‐6(qm200), a mutation in a conserved subunit of mitochondrial complex I (NUDFB4). The mutation reduces the function of complex I and, like isp‐1(qm150), results in low oxygen consumption, slow growth, slow behavior, and increased lifespan. We have compared the phenotypes of nuo‐6(qm200) to those of nuo‐6(RNAi) and found them to be distinct in crucial ways, including patterns of growth and fertility, behavioral rates, oxygen consumption, ATP levels, autophagy, and resistance to paraquat, as well as expression of superoxide dismutases, mitochondrial heat‐shock proteins, and other gene expression markers. RNAi treatments appear to generate a stress and autophagy response, while the genomic mutation alters electron transport and reactive oxygen species metabolism. For many phenotypes, we also compared isp‐1(qm150) to isp‐1(RNAi) and found the same pattern of differences. Most importantly, we found that, while the lifespan of nuo‐6, isp‐1 double mutants is not greater than that of the single mutants, the lifespan increase induced by nuo‐6(RNAi) is fully additive to that induced by isp‐1(qm150), and the increase induced by isp‐1(RNAi) is fully additive to that induced by nuo‐6(qm200). Our results demonstrate that distinct and separable aspects of mitochondrial biology affect lifespan independently.  相似文献   

12.
Genes encoding longevity: from model organisms to humans   总被引:1,自引:0,他引:1  
Ample evidence from model organisms has indicated that subtle variation in genes can dramatically influence lifespan. The key genes and molecular pathways that have been identified so far encode for metabolism, maintenance and repair mechanisms that minimize age-related accumulation of permanent damage. Here, we describe the evolutionary conserved genes that are involved in lifespan regulation of model organisms and humans, and explore the reasons of discrepancies that exist between the results found in the various species. In general, the accumulated data have revealed that when moving up the evolutionary ladder, together with an increase of genome complexity, the impact of candidate genes on lifespan becomes smaller. The presence of genetic networks makes it more likely to expect impact of variation in several interacting genes to affect lifespan in humans. Extrapolation of findings from experimental models to humans is further complicated as phenotypes are critically dependent on the setting in which genes are expressed, while laboratory conditions and modern environments are markedly dissimilar. Finally, currently used methodologies may have only little power and validity to reveal genetic variation in the population. In conclusion, although the study of model organisms has revealed potential candidate genetic mechanisms determining aging and lifespan, to what extent they explain variation in human populations is still uncertain.  相似文献   

13.
14.
Explaining the strong variation in lifespan among organisms remains a major challenge in evolutionary biology. Whereas previous work has concentrated mainly on differences in selection regimes and selection pressures, we hypothesize that differences in genetic drift may explain some of this variation. We develop a model to formalize this idea and show that the strong positive relationship between lifespan and genetic diversity predicted by this model indeed exists among populations of Daphnia magna, and that ageing is accelerated in small populations. Additional results suggest that this is due to increased drift in small populations rather than adaptation to environments favoring faster life histories. First, the correlation between genetic diversity and lifespan remains significant after statistical correction for potential environmental covariates. Second, no trade‐offs are observed; rather, all investigated traits show clear signs of increased genetic load in the small populations. Third, hybrid vigor with respect to lifespan is observed in crosses between small but not between large populations. Together, these results suggest that the evolution of lifespan and ageing can be strongly affected by genetic drift, especially in small populations, and that variation in lifespan and ageing may often be nonadaptive, due to a strong contribution from mutation accumulation.  相似文献   

15.
The study of cellular senescence and proliferative lifespan is becoming increasingly important because of the promises of autologous cell therapy, the need for model systems for tissue disease and the implication of senescent cell phenotypes in organismal disease states such as sarcopenia, diabetes and various cancers, among others. Here, we explain the concepts of proliferative cellular lifespan and cellular senescence, and we present factors that have been shown to mediate cellular lifespan positively or negatively. We review much recent literature and present potential molecular mechanisms by which lifespan mediation occurs, drawing from the fields of telomere biology, metabolism, NAD+ and sirtuin biology, growth factor signaling and oxygen and antioxidants. We conclude that cellular lifespan and senescence are complex concepts that are governed by multiple independent and interdependent pathways, and that greater understanding of these pathways, their interactions and their convergence upon specific cellular phenotypes may lead to viable therapies for tissue regeneration and treatment of age‐related pathologies, which are caused by or exacerbated by senescent cells in vivo.  相似文献   

16.
17.
Studies of the effects of single-gene mutations on longevity in Caenorhabditis elegans, Drosophila melanogaster and Mus musculus identified homologous, highly conserved signalling pathways that influence ageing. In each of these very distantly related species, single mutations which lead-directly or indirectly-to reduced insulin, insulin-like growth factor (IGF) or insulin/IGF-like signalling (IIS) can produce significant increases in both average and maximal lifespan. In mice, most of the life-extending mutations described to date reduce somatotropic (growth hormone (GH) and IGF-1) signalling. The reported extensions of longevity are most robust in GH-deficient and GH-resistant mice, while suppression of somatotropic signalling 'downstream' of the GH receptor produces effects that are generally smaller and often limited to female animals. This could be due to GH influencing ageing by both IGF-1-mediated and IGF-1-independent mechanisms. In mutants that have been examined in some detail, increased longevity is associated with various indices of delayed ageing and extended 'healthspan'. The mechanisms that probably underlie the extension of both lifespan and healthspan of these animals include increased stress resistance, improved antioxidant defences, alterations in insulin signalling (e.g. hypoinsulinaemia combined with improved insulin sensitivity in some mutants and insulin resistance in others), a shift from pro- to anti-inflammatory profile of circulating adipokines, reduced mammalian target of rapamycin-mediated translation and altered mitochondrial function including greater utilization of lipids when compared with carbohydrates.  相似文献   

18.
Most investigations on the effects of and responses to stress exposures have been performed on a limited number of model organisms in the laboratory. Here much progress has been made in terms of identifying and describing beneficial and detrimental effects of stress, responses to stress and the mechanisms behind stress tolerance. However, to gain further understanding of which genes are involved in stress resistance and how the responses are regulated from an ecological and evolutionary perspective there is a need to combine studies on multiple levels of biological organization from DNA to phenotypes. Furthermore, we emphasize the importance of studying ecologically relevant traits and natural or semi-natural conditions to verify whether the results obtained are representative of the ecological and evolutionary processes in the field. Here, we will review what we currently know about thermal adaptation and the role of different stress responses to thermal challenges in insects, particularly Drosophila. Furthermore, we address some key questions that require future attention.  相似文献   

19.
《Free radical research》2013,47(7):813-820
Abstract

This group has invented a novel deuterohemin containing peptide deuterohemin-AlaHisThrValGluLys (DhHP-6), which has various biological activities including protection of murine ischemia reperfusion injury, improving cell survival and preventing apoptosis. It was hypothesized that DhHP-6 is beneficial on the lifespan of Caenorhabditis elegans (C. elegans) and increases their resistance to heat and oxidative stress. C. elegans were treated with different concentrations of DhHP-6. Survival time and sensitivity to heat and paraquat were investigated. The data demonstrated that the mean survival time of C. elegans was significantly increased (p < 0.05) in the DhHP-6 treated group compared with the control group. The maximum lifespan was not affected by DhHP-6 treatment. DhHP-6 improved the survival rate of C. elegans in the acute heat stress (35°C) and rescued the C. elegans' sensitivity to paraquat in acute oxidative stress. Superoxide dismutase 3 (SOD-3) protein was up-regulated by DhHP-6 treatment. It was further demonstrated that stress resistance genes such as hsp-16.1, hsp-16.49 and sir-2.1 were regulated by DhHP-6. DAF-16 and SIR-2.1 genes are essential for the beneficial effect of DhHP-6. Therefore, the investigation into the beneficial effect of DhHP-6 on C. elegans' lifespan has the potential to develop novel drugs to prevent ageing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号