首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Chan IS  Zhang Z 《Biometrics》1999,55(4):1202-1209
Confidence intervals are often provided to estimate a treatment difference. When the sample size is small, as is typical in early phases of clinical trials, confidence intervals based on large sample approximations may not be reliable. In this report, we propose test-based methods of constructing exact confidence intervals for the difference in two binomial proportions. These exact confidence intervals are obtained from the unconditional distribution of two binomial responses, and they guarantee the level of coverage. We compare the performance of these confidence intervals to ones based on the observed difference alone. We show that a large improvement can be achieved by using the standardized Z test with a constrained maximum likelihood estimate of the variance.  相似文献   

2.
Simultaneous confidence intervals for comparing binomial parameters   总被引:1,自引:0,他引:1  
Agresti A  Bini M  Bertaccini B  Ryu E 《Biometrics》2008,64(4):1270-1275
SUMMARY: To compare proportions with several independent binomial samples, we recommend a method of constructing simultaneous confidence intervals that uses the studentized range distribution with a score statistic. It applies to a variety of measures, including the difference of proportions, odds ratio, and relative risk. For the odds ratio, a simulation study suggests that the method has coverage probability closer to the nominal value than ad hoc approaches such as the Bonferroni implementation of Wald or "exact" small-sample pairwise intervals. It performs well even for the problematic but practically common case in which the binomial parameters are relatively small. For the difference of proportions, the proposed method has performance comparable to a method proposed by Piegorsch (1991, Biometrics 47, 45-52).  相似文献   

3.
4.
Problems of establishing equivalence or noninferiority between two medical diagnostic procedures involve comparisons of the response rates between correlated proportions. When the sample size is small, the asymptotic tests may not be reliable. This article proposes an unconditional exact test procedure to assess equivalence or noninferiority. Two statistics, a sample-based test statistic and a restricted maximum likelihood estimation (RMLE)-based test statistic, to define the rejection region of the exact test are considered. We show the p-value of the proposed unconditional exact tests can be attained at the boundary point of the null hypothesis. Assessment of equivalence is often based on a comparison of the confidence limits with the equivalence limits. We also derive the unconditional exact confidence intervals on the difference of the two proportion means for the two test statistics. A typical data set of comparing two diagnostic procedures is analyzed using the proposed unconditional exact and asymptotic methods. The p-value from the unconditional exact tests is generally larger than the p-value from the asymptotic tests. In other words, an exact confidence interval is generally wider than the confidence interval obtained from an asymptotic test.  相似文献   

5.
For two independent binomial samples, the usual exact confidence interval for the odds ratio based on the conditional approach can be very conservative. Recently, Agresti and Min (2002) showed that the unconditional intervals are preferable to conditional intervals with small sample sizes. We use the unconditional approach to obtain a modified interval, which has shorter length, and its coverage probability is closer to and at least the nominal confidence coefficient.  相似文献   

6.
Field samples are commonly used to estimate disease prevalence in wild populations. Our confidence in these estimates requires understanding the sensitivity and specificity of the diagnostic tests. We assessed the sensitivity of the most commonly used diagnostic tests for amphibian Ranavirus by infecting salamanders (Ambystoma tigrinum; Amphibia, Caudata) with Ambystoma tigrinum virus (ATV) and then sampling euthanized animals (whole animal) and noneuthanized animals (tail clip) at five time intervals after exposure. We used a standard polymerase chain reaction (PCR) protocol to screen for ATV. Agreement between test results from whole-animal and tail-clip samples increased with time postexposure. This indicates that the ability to identify infected animals increases following exposure, leading to a more accurate estimate of prevalence in a population. Our results indicate that tail-clip sampling can underestimate the true prevalence of ATV in wild amphibian populations.  相似文献   

7.
Recently several papers have been published that deal with the construction of exact unconditional tests for non-inferiority and confidence intervals based on the approximative unconditional restricted maximum likelihood test for two binomial random variables. Soon after the papers have been published the commercially available software for exact tests StatXact has incorporated the new methods. There are however gaps in the proofs which since have not been resolved adequately. Further it turned out that the methods for testing non-inferiority are not coherent and test for non-inferiority can easily come to different conclusions compared to the confidence interval inclusion rule. In this paper, a proposal is made how to resolve the open problems. Berger and Boos (1994) developed the confidence interval method for testing equality of two proportions. StatXact (Version 5) has extended this method for shifted hypotheses. It is shown that at least for unbalanced designs (i.e. largely different sample sizes) the Berger and Boos method can lead to controversial results.  相似文献   

8.
In the estimation of proportions by group testing, unequal sized groups results in an ambiguous ordering of the sample space, which complicates the construction of exact confidence intervals. The total number of positive groups is shown to be a suitable statistic for ordering outcomes, provided its ties are broken by the MLE. We propose an interval estimation method based on this quantity, with a mid‐P correction. Coverage is evaluated using group testing problems in plant disease assessment and virus transmission by insect vectors. The proposed method provides good coverage in a range of situations, and compares favorably with existing exact methods.  相似文献   

9.
This paper provides asymptotic simultaneous confidence intervals for a success probability and intraclass correlation of the beta‐binomial model, based on the maximum likelihood estimator approach. The coverage probabilities of those intervals are evaluated. An application to screening mammography is presented as an example. The individual and simultaneous confidence intervals for sensitivity and specificity and the corresponding intraclass correlations are investigated. Two additional examples using influenza data and sex ratio data among sibships are also considered, where the individual and simultaneous confidence intervals are provided.  相似文献   

10.
Chan IS  Tang NS  Tang ML  Chan PS 《Biometrics》2003,59(4):1170-1177
Testing of noninferiority has become increasingly important in modern medicine as a means of comparing a new test procedure to a currently available test procedure. Asymptotic methods have recently been developed for analyzing noninferiority trials using rate ratios under the matched-pair design. In small samples, however, the performance of these asymptotic methods may not be reliable, and they are not recommended. In this article, we investigate alternative methods that are desirable for assessing noninferiority trials, using the rate ratio measure under small-sample matched-pair designs. In particular, we propose an exact and an approximate exact unconditional test, along with the corresponding confidence intervals based on the score statistic. The exact unconditional method guarantees the type I error rate will not exceed the nominal level. It is recommended for when strict control of type I error (protection against any inflated risk of accepting inferior treatments) is required. However, the exact method tends to be overly conservative (thus, less powerful) and computationally demanding. Via empirical studies, we demonstrate that the approximate exact score method, which is computationally simple to implement, controls the type I error rate reasonably well and has high power for hypothesis testing. On balance, the approximate exact method offers a very good alternative for analyzing correlated binary data from matched-pair designs with small sample sizes. We illustrate these methods using two real examples taken from a crossover study of soft lenses and a Pneumocystis carinii pneumonia study. We contrast the methods with a hypothetical example.  相似文献   

11.
S E Vollset  K F Hirji  A A Afifi 《Biometrics》1991,47(4):1311-1325
We compare six methods for constructing confidence intervals for a single parameter in stratified logistic regression. Three of these are based on inversion of standard asymptotic tests--namely, the Wald, the score, and the likelihood ratio tests. The other three are based on the exact distribution of the sufficient statistic for the parameter of interest. These include the traditional exact method of constructing confidence intervals, and two others, the mid-P and mean-P methods, which are modifications of this procedure that aim at reducing the conservative bias of the exact method. Using efficient algorithms, the six methods are compared by determination of their exact coverage levels in a series of conditional sample spaces. An incident case-control study of lung cancer in women is used to further illustrate the differences among the various methods. Computation of coverage functions is seen as a useful graphical diagnostic tool for assessing the appropriateness of different methods. The mid-P and the score methods are seen to have better coverage properties than the other four.  相似文献   

12.
E J Bedrick 《Biometrics》1987,43(4):993-998
The power divergence family of statistics introduced by Cressie and Read (1984, Journal of the Royal Statistical Society, Series B 46, 440-464) is used to obtain approximate confidence intervals for the ratio of two proportions. Intervals based on inverting the Pearson, likelihood-ratio, and Freeman-Tukey statistics are included in this family. Small-sample comparisons of the intervals are presented.  相似文献   

13.
Uncertainty in source partitioning using stable isotopes   总被引:11,自引:0,他引:11  
Stable isotope analyses are often used to quantify the contribution of multiple sources to a mixture, such as proportions of food sources in an animal's diet, or C3 and C4 plant inputs to soil organic carbon. Linear mixing models can be used to partition two sources with a single isotopic signature (e.g., '13C) or three sources with a second isotopic signature (e.g., '15N). Although variability of source and mixture signatures is often reported, confidence interval calculations for source proportions typically use only the mixture variability. We provide examples showing that omission of source variability can lead to underestimation of the variability of source proportion estimates. For both two- and three-source mixing models, we present formulas for calculating variances, standard errors (SE), and confidence intervals for source proportion estimates that account for the observed variability in the isotopic signatures for the sources as well as the mixture. We then performed sensitivity analyses to assess the relative importance of: (1) the isotopic signature difference between the sources, (2) isotopic signature standard deviations (SD) in the source and mixture populations, (3) sample size, (4) analytical SD, and (5) the evenness of the source proportions, for determining the variability (SE) of source proportion estimates. The proportion SEs varied inversely with the signature difference between sources, so doubling the source difference from 2‰ to 4‰ reduced the SEs by half. Source and mixture signature SDs had a substantial linear effect on source proportion SEs. However, the population variability of the sources and the mixture are fixed and the sampling error component can be changed only by increasing sample size. Source proportion SEs varied inversely with the square root of sample size, so an increase from 1 to 4 samples per population cut the SE in half. Analytical SD had little effect over the range examined since it was generally substantially smaller than the population SDs. Proportion SEs were minimized when sources were evenly divided, but increased only slightly as the proportions varied. The variance formulas provided will enable quantification of the precision of source proportion estimates. Graphs are provided to allow rapid assessment of possible combinations of source differences and source and mixture population SDs that will allow source proportion estimates with desired precision. In addition, an Excel spreadsheet to perform the calculations for the source proportions and their variances, SEs, and 95% confidence intervals for the two-source and three-source mixing models can be accessed at http://www.epa.gov/wed/pages/models.htm.  相似文献   

14.
Quantifying the relative proportion of coexisting genotypes (clones) of a malaria parasite within its vertebrate host's blood would provide insights into critical features of the biology of the parasite, including competition among clones, gametocyte sex ratio, and virulence. However, no technique has been available to extract such data for natural parasite-host systems when the number of clones cycling in the overall parasite population is likely to be large. Recent studies find that data from genetic analyzer instruments for microsatellite markers allow measuring clonal proportions. We conducted a validation study for Plasmodium mexicanum and Plasmodium falciparum by mixing DNA from single-clone infections to simulate mixed infections of each species with known proportions of clones. Results for any mixture of DNA gave highly reproducible results. The relationship between known and measured relative proportions of clones was linear, with high regression r2 values. Known and measured clone proportions for simulated infections followed over time (mixtures) were compared with 3 methods: using uncorrected data, with uncorrected data and confidence intervals constructed from observed experimental error, and using a baseline mixture of equal proportions to calibrate all other results. All 3 methods demonstrated value in studies of mixed-genotype infections sampled a single time or followed over time. Thus, the method should open new windows into the biology of malaria parasites.  相似文献   

15.
Qu P  Qu Y 《Biometrics》2000,56(4):1249-1255
After continued treatment with an insecticide, within the population of the susceptible insects, resistant strains will occur. It is important to know whether there are any resistant strains, what the proportions are, and what the median lethal doses are for the insecticide. Lwin and Martin (1989, Biometrics 45, 721-732) propose a probit mixture model and use the EM algorithm to obtain the maximum likelihood estimates for the parameters. This approach has difficulties in estimating the confidence intervals and in testing the number of components. We propose a Bayesian approach to obtaining the credible intervals for the location and scale of the tolerances in each component and for the mixture proportions by using data augmentation and Gibbs sampler. We use Bayes factor for model selection and determining the number of components. We illustrate the method with data published in Lwin and Martin (1989).  相似文献   

16.
In this article, we compare Wald-type, logarithmic transformation, and Fieller-type statistics for the classical 2-sided equivalence testing of the rate ratio under matched-pair designs with a binary end point. These statistics can be implemented through sample-based, constrained least squares estimation and constrained maximum likelihood (CML) estimation methods. Sample size formulae based on the CML estimation method are developed. We consider formulae that control a prespecified power or confidence width. Our simulation studies show that statistics based on the CML estimation method generally outperform other statistics and methods with respect to actual type I error rate and average width of confidence intervals. Also, the corresponding sample size formulae are valid asymptotically in the sense that the exact power and actual coverage probability for the estimated sample size are generally close to their prespecified values. The methods are illustrated with a real example from a clinical laboratory study.  相似文献   

17.
An important issue in dose finding is whether a further dose increment leads to a relevant increase in efficacy. Clinical efficacy should not be considered by point zero null hypotheses. Instead, shifted hypotheses for the difference or the ratio can be used. Because the a priori definition of a relevance threshold is frequently difficult, confidence intervals should be used for a posteriori interpretation. Sample size estimation – a‐priori or by adaptive interim analysis‐ is inherent, because the effective dose steps are arbitrary in un‐designed studies. For simultaneous confidence intervals without order restriction the exact distributions under the null and the alternative hypothesis is proposed for the general unbalanced one‐way design.  相似文献   

18.
A technique for fitting mixture distributions to phenylthiocarbamide (PTC) sensitivity is described. Under the assumptions of Hardy-Weinberg equilibrium, a mixture of three normal components is postulated for the observed distribution, with the mixing parameters corresponding to the proportions of the three genotypes associated with two alleles A and a acting at a single locus. The corresponding genotypes AA, Aa, and aa are then considered to have separate means and variances. This paper is concerned with estimating the parameters of the model, and their standard errors, by using an application of the EM algorithm. This technique also caters for the fact that the sensitivity measurements are only known to lie between the endpoints of certain intervals and that the exact measurement of the attribute is not possible.  相似文献   

19.
20.
A procedure is presented for constructing an exact confidence interval for the ratio of the two variance components in a possibly unbalanced mixed linear model that contains a single set of m random effects. This procedure can be used in animal and plant breeding problems to obtain an exact confidence interval for a heritability. The confidence interval can be defined in terms of the output of a least squares analysis. It can be computed by a graphical or iterative technique requiring the diagonalization of an m X m matrix or, alternatively, the inversion of a number of m X m matrices. Confidence intervals that are approximate can be obtained with much less computational burden, using either of two approaches. The various confidence interval procedures can be extended to some problems in which the mixed linear model contains more than one set of random effects. Corresponding to each interval procedure is a significance test and one or more estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号