首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectivesNumerous genetic loci have been associated with measures of central fat accumulation, such as waist-to-hip ratio adjusted for body mass index (WHRadjBMI). However the mechanisms by which genetic variations influence obesity remain largely elusive. Lipolysis is a key process for regulation of lipid storage in adipocytes, thus is implicated in obesity and its metabolic complications. Here, genetic variants at 36 WHRadjBMI-associated loci were examined for their influence on abdominal subcutaneous adipocyte lipolysis.ResultsThe WHRadjBMI-associated loci CMIP, PLXND1, VEGFA and ZNRF3-KREMEN1 demonstrated nominal associations with spontaneous and/or stimulated lipolysis. Candidate genes in these loci have been reported to influence NFκB-signaling, fat cell size and Wnt signalling, all of which may influence lipolysis.SignificanceThis report provides evidence for specific WHRadjBMI-associated loci as candidates to modulate adipocyte lipolysis. Additionally, our data suggests that genetically increased central fat accumulation is unlikely to be a major cause of altered lipolysis in abdominal adipocytes.  相似文献   

2.
Objectives: To investigate possible obesity candidate genes in regions of porcine quantitative trait loci (QTL) for fat deposition and obesity‐related phenotypes. Research Methods and Procedures: Chromosome mapping and QTL analyses of obesity candidate genes were performed using DNA panels from a reference pig family. Statistical association analyses of these genes were performed for fat deposition phenotypes in several other commercial pig populations. Results: Eight candidate genes were mapped to QTL regions of pig chromosomes in this study. These candidate genes also served as anchor loci to determine homologous human chromosomal locations of pig fat deposition QTL. Preliminary analyses of relationships among polymorphisms of individual candidate genes and a variety of phenotypic measurements in a large number of pigs were performed. On the basis of available data, gene‐gene interactions were also studied. Discussion: Comparative analysis of obesity‐related genes in the pig is not only important for development of marker‐assisted selection on growth and fat deposition traits in the pig but also provides for an understanding of their genetic roles in the development of human obesity.  相似文献   

3.
4.
Objective: A number of candidate genes have been implicated in the pathogenesis of obesity in humans. This study examines associations between longitudinal changes in body mass and composition and the presence of polymorphisms in the β‐3 adrenergic receptor, tumor necrosis factor‐α, leptin, and leptin receptor (Lepr) in a cohort of Australian women. Research Methods and Procedures: Healthy white Australian women (n = 335) were randomly selected from the Barwon region of Victoria and underwent baseline anthropometry and double‐energy X‐ray absorptiometry for assessment of body mass and adiposity. These measurements were repeated again at 2‐year follow‐up. Genomic DNA was extracted and used for polymerase chain reaction‐based genotyping of all polymorphisms. Results: The Pro1019Pro Lepr polymorphism was associated with longitudinal increases in body weight (p = 0.02), fat mass (p = 0.05), and body mass index (p = 0.01) in this study, and individuals homozygous for the A allele at this locus had a greater propensity to gain body fat over time. The largest effects on body composition seemed to be in individuals already obese at baseline. Changes in body weight, fat mass, percent body fat, and body mass index over a 2‐year period were not associated with genetic variation in the β‐3 adrenergic receptor (Trp64Arg), tumor necrosis factor‐α promoter, or leptin genes in non‐obese or obese women. Discussion: These results suggest that a Lepr polymorphism is involved in the regulation of body mass and adiposity in obese Australian white women, which may have implications for the treatment of obesity in this population.  相似文献   

5.
In an attempt to identify the genetic basis for susceptibility to non-insulin-dependent diabetes mellitus within the context of obesity, we generated 401 genetically obeseLeprfa/LeprfaF2 WKY13M intercross rats that demonstrated wide variation in multiple phenotypic measures related to diabetes, including plasma glucose concentration, percentage of glycosylated hemoglobin, plasma insulin concentration, and pancreatic islet morphology. Using selective genotyping genome scanning approaches, we have identified three quantitative trait loci (QTLs) on Chr. 1 (LOD 7.1 for pancreatic morpholology), Chr. 12 (LOD 5.1 for body mass index and LOD 3.4 for plasma glucose concentration), and Chr. 16 (P< 0.001 for genotype effect on plasma glucose concentration). The obese F2 progeny demonstrated sexual dimorphism for these traits, with increased diabetes susceptibility in the males appearing at approximately 6 weeks of age, as sexual maturation occurred. For each of the QTLs, the linked phenotypes demonstrated sexual dimorphism (more severe affection in males). The QTL on Chr. 1 maps to a region vicinal to that previously linked to adiposity in studies of diabetes susceptibility in the nonobese Goto–Kakizaki rat, which is genetically closely related to the Wistar counterstrain we employed. Several candidate genes, including tubby (tub), multigenic obesity 1 (Mob1), adult obesity and diabetes (Ad), and insulin-like growth factor-2 (Igf2), map to murine regions homologous to the QTL region identified on rat Chr. 1.  相似文献   

6.
Mice have proved to be a powerful model organism for understanding obesity in humans. Single gene mutants and genetically modified mice have been used to identify obesity genes, and the discovery of loci for polygenic forms of obesity in the mouse is an important next step. To pursue this goal, the inbred mouse strains 129P3/J (129) and C57BL/6ByJ (B6), which differ in body weight, body length, and adiposity, were used in an F2 cross to identify loci affecting these phenotypes. Linkages were determined in a two-phase process. In the first phase, 169 randomly selected F2 mice were genotyped for 134 markers that covered all autosomes and the X Chromosome (Chr). Significant linkages were found for body weight and body length on Chr 2. In addition, we detected several suggestive linkages on Chr 2 (adiposity), 9 (body weight, body length, and adiposity), and 16 (adiposity), as well as two suggestive sex-dependent linkages for body length on Chrs 4 and 9. In the second phase, 288 additional F2 mice were genotyped for markers near these regions of linkage. In the combined set of 457 F2 mice, six significant linkages were found: Chr 2 (Bwq5, body weight and Bdln3, body length), Chr 4 (Bdln6, body length, males only), Chr 9 (Bwq6, body weight and Adip5, adiposity), and Chr 16 (Adip9, adiposity), as well as several suggestive linkages (Adip2, adiposity on Chr 2; Bdln4 and Bdln5, body length on Chr 9). In addition, there was a suggestive linkage to body length in males on Chr 9 (Bdln4). For adiposity, there was evidence for epistatic interactions between loci on Chr 9 (Adip5) and 16 (Adip9). These results reinforce the concept that obesity is a complex trait. Genetic loci and their interactions, in conjunction with sex, age, and diet, determine body size and adiposity in mice.  相似文献   

7.
High dietary fat intake and obesity may increase susceptibility to certain forms of cancer. To study the interactions of dietary fat, obesity, and metastatic mammary cancer, we created a population of F2 mice cosegregating obesity QTL and the MMTV-PyMT transgene. We fed the F2 mice either a very-high-fat or a matched-control-fat diet and measured growth, body composition, age at mammary tumor onset, tumor number and severity, and formation of pulmonary metastases. SNP genotyping across the genome facilitated analyses of QTL and QTL × diet interaction effects. Here we describe development of the F2 population (n = 615) which resulted from a cross between the polygenic obesity model M16i and FVB/NJ-TgN (MMTV-PyMT)634Mul, effects of diet on growth and body composition, and QTL and QTL × diet and/or gender interaction effects for growth and obesity-related phenotypes. We identified 38 QTL for body composition traits that were significant at the genome-wide 0.05 level, likely representing nine distinct loci after accounting for pleiotropic effects. QTL × diet and/or gender interactions were present at 15 of these QTL, indicating that such interactions play a significant role in defining the genetic architecture of complex traits such as body weight and obesity.  相似文献   

8.
In the present investigation, we have attempted to identify regions of the genome in which “obesity genes” potentially reside using robust sib-pair linkage analysis. Data were collected on 1,628 individuals in 301 nuclear families residing in the environs of Québec City during the period 1978–1981. In addition to traditional blood group antigens and enzyme polymorphisms, several phenotypes in the obesity domain that are associated with increased morbidity were assessed, including measures relating to heaviness (i.e., the body mass index), body composition and nutrient partitioning (i.e., % body fat), and regional fat distribution without and with standardization for total fat mass (i.e., the sum of six skinfold thicknesses, and the ratio of the sums of trunk to extremity skinfold thicknesses). Three consistent patterns of potential linkage relationships with obesity phenotypes were revealed in these data, involving the marker loci adenosine deaminase, the Kell blood group antigen, and esterase D, which identify chromosomal regions 20q13, 7q33, and 13q14, respectively. Other potential linkages also were identified in the short arm of chromosome 1, interesting because of the presence of the db and fa loci on homologous regions of chromosome 1 in mouse and rat models of obesity, respectively. Each of the tentative linkage relationships reported here warrant follow-up using alternative methods and require replication in independent studies.  相似文献   

9.
Details of a new model of diet-dependent polygenic obesity are presented. CAST/Ei (Mus m. castaneus) mice remain lean after 12 weeks on a high-fat (32 kcal% fat) diet, while C57BL/6J mice become obese. The genes responsible for the obesity segregate in an F2 population derived from an intercross between CAST/Ei and C57BL/6J mice. Quantitative trait analysis, with simple sequence length polymorphisms (SSLPs) at loci previously linked to rodent obesities, identified a quantitative trait locus (QTL) on Chromosome (Chr) 15, accounting for approximately 9% of the variance in adiposity and 14% of the variance in mesenteric depot size. This locus appears to be at the same location as the dietary obesity-3 (Do3) locus controlling body fat content, which was previously identified in an F2 population derived from an SWR/J × AKR/J cross. This is also at the same location as the multigenic obesity-4 (Mob4) locus found in BSB mice, which display spontaneous polygenic obesity. Suggestive linkage also was found at loci close to the single gene mutations A y on Chr 2 and tub on Chr 7. Received 15 January 1996 / Accepted 12 May 1996  相似文献   

10.
11.
Genome‐wide association and linkage studies have identified multiple susceptibility loci for obesity. We hypothesized that such loci may affect weight loss outcomes following dietary or surgical weight loss interventions. A total of 1,001 white individuals with extreme obesity (BMI >35 kg/m2) who underwent a preoperative diet/behavioral weight loss intervention and Roux‐en‐Y gastric bypass surgery were genotyped for single‐nucleotide polymorphisms (SNPs) in or near the fat mass and obesity‐associated (FTO), insulin induced gene 2 (INSIG2), melanocortin 4 receptor (MC4R), and proprotein convertase subtilisin/kexin type 1 (PCSK1) obesity genes. Association analysis was performed using recessive and additive models with pre‐ and postoperative weight loss data. An increasing number of obesity SNP alleles or homozygous SNP genotypes was associated with increased BMI (P < 0.0006) and excess body weight (P < 0.0004). No association between the amounts of weight lost from a short‐term dietary intervention and any individual obesity SNP or cumulative number of obesity SNP alleles or homozygous SNP genotypes was observed. Linear mixed regression analysis revealed significant differences in postoperative weight loss trajectories across groups with low, intermediate, and high numbers of obesity SNP alleles or numbers of homozygous SNP genotypes (P < 0.0001). Initial BMI interacted with genotype to influence weight loss with initial BMI <50 kg/m2, with evidence of a dosage effect, which was not present in individuals with initial BMI ≥50 kg/m2. Differences in metabolic rate, binge eating behavior, and other clinical parameters were not associated with genotype. These data suggest that response to a surgical weight loss intervention is influenced by genetic susceptibility and BMI.  相似文献   

12.
Appetite Control: Does leptin lighten the problem of obesity?   总被引:1,自引:0,他引:1  
The recent discovery of ‘leptin’, the product of the mouse obese gene that appears to be a satiety factor, has electrified the field of obesity research. Elucidating how the protein works could be a formidable challenge.  相似文献   

13.
14.
We describe a new multiple gene mouse model of differential sensitivity to dietary obesity that provides a tool for dissecting the genetic basis for body composition and obesity. AKR/J and SWR/J male mice, as well as male progeny of intercrosses between these strains, were fed a high-fat diet for 12 weeks beginning at 5 weeks of age. Body weight and energy intake were assessed weekly. At the conclusion of the dietary manipulation, an adiposity index was calculated by dividing the weight of seven dissected adipose depots by the carcass weight. AKR/J mice had approximately sixfold greater adiposity than SWR/J mice. Examination of the segregation of the adiposity trait in the progeny of crosses between these strains indicates that the trait is determined by a minimum of one to four genetic loci and that there is significant dominance of the AKR/J genotype. A preliminary analysis with markers linked to the known mouse obesity genes ob, db, tub, and fat showed no linkage with these loci. However, a quantitative trait locus was found that maps distal to the db gene on Chromosome (Chr) 4. This locus has been designated dietary obese 1 or Do1.  相似文献   

15.
16.
Leptin is produced by adipose tissue and acts as a feedback signal to the hypothalamus controlling energy homeostasis, by reducing food consumption and increasing energy expenditure. Because serum leptin levels are highly correlated with body fat mass, they can be used as an index to predict obesity-related diseases. However, the identity of genetic factors that influence the obesity and the obesity-related metabolic disorders remains largely unknown. In this study, we performed a whole-genome scan search, using 382 F2 intercross progeny between the Otsuka Long-Evans Tokushima Fatty (OLETF) rat, an animal model for obese type 2 diabetes in human, and F344 rat, in order to identify loci responsible for the regulation of leptin and other obesity-related plasma substances. We have identified two quantitative trait loci (QTLs) contributing to serum leptin levels. These two loci, designated Olep1 [Chromosome (Chr) 2] and Olep2 (Chr 6), were homologous to those of human genome regions containing several potential candidate genes for obesity. These are fatty acid-binding protein 2 (FABP2), FABP4, and FABP5 for Olep1, and proopiomelanocortin (POMC) and glucose regulatory protein (GCKR) for Olep2.  相似文献   

17.

Objective:

Common variation at the loci harboring fat mass and obesity (FTO), melanocortin receptor 4 (MC4R), and transmembrane protein 18 (TMEM18) is consistently reported as being statistically most strongly associated with obesity. Investigations if these loci also harbor rarer missense variants that confer substantially higher risk of common childhood obesity in African American (AA) children were conducted.

Design and Methods:

The exons of FTO, MC4R, and TMEM18 in an initial subset of our cohort were sequenced, that is, 200 obese (BMI≥95th percentile) and 200 lean AA children (BMI≤5th percentile). Any missense exonic variants that were uncovered went on to be further genotyped in a further 768 obese and 768 lean (BMI≤50th percentile) children of the same ethnicity.

Results:

A number of exonic variants were observed from our sequencing effort: seven in FTO, of which four were non‐synonymous (A163T, G182A, M400V, and A405V), thirteen in MC4R, of which six were non‐synonymous (V103I, N123S, S136A, F202L, N240S, and I251L), and four in TMEM18, of which two were non‐synonymous (P2S and V113L). Follow‐up genotyping of these missense variants revealed only one significant difference in allele frequency between cases and controls, namely with N240S in MC4R (Fisher's exact P = 0.0001).

Conclusion:

In summary, moderately rare missense variants within the FTO, MC4R, and TMEM18 genes observed in our study did not confer risk of common childhood obesity in African Americans except for a degree of evidence for one known loss‐of‐function variant in MC4R.  相似文献   

18.
The aim of present study is to evaluate the effects of Garcinia cambogia on the mRNA levels of the various genes involved in adipogenesis, as well as on body weight gain, visceral fat accumulation, and other biochemical markers of obesity in obesity-prone C57BL/6J mice. Consumption of the Garcinia cambogia extract effectively lowered the body weight gain, visceral fat accumulation, blood and hepatic lipid concentrations, and plasma insulin and leptin levels in a high-fat diet (HFD)-induced obesity mouse model. The Garcinia cambogia extract reversed the HFD-induced changes in the expression pattern of such epididymal adipose tissue genes as adipocyte protein aP2 (aP2), sterol regulatory element-binding factor 1c (SREBP1c), peroxisome proliferator-activated receptor γ2 (PPARγ2), and CCAT/enhancer-binding protein α (C/EBPα). These findings suggest that the Garcinia cambogia extract ameliorated HFD-induced obesity, probably by modulating multiple genes associated with adipogenesis, such as aP2, SREBP1c, PPARγ2, and C/EBPα in the visceral fat tissue of mice.  相似文献   

19.
Objective: The A/J and C57BL/6J mouse strains differ markedly in their exploratory behavior and their weight gain on a high‐fat diet. We examined the genetic contributions of exploratory behavior to body weight and tested for shared, pleiotropic loci influencing energy homeostasis. Research Methods and Procedures: Segregating (A×B6)F2 intercross (n = 514) and (B6AF1×A/J)N2 backcross (N = 223) populations were studied, phenotyping for weight and exploratory behaviors. Relationships among traits were analyzed by correlations. Weight traits were dissected with a genome‐wide scan. Results: Modest correlations were found between exploratory behaviors and weight, explaining 2% to 14% of the variance. Quantitative trait loci (QTL) for body weight at 8 weeks (wgt8), 10 weeks (wgt10), and 2‐week weight gain (difference between weeks 8 and 10) on a 6% fat diet were mapped. Two QTL on chromosome 1 (peaks at 66 cM and 100 cM; Bw8q1) affected wgt8 [likelihood of the odds ratio (Lod), 3.0 and 4.4] and wgt10 (Lod, 2.2 and 3.4), respectively. In the backcross, a significant QTL on chromosome 4 (peak at 66 cM; Bw8q2) affected wgt 8 (Lod, 3.3) and wgt10 (Lod, 3.1). For 2‐week weight gain, suggestive QTL were mapped on chromosomes 4 and 6. The chromosome 6 QTL region overlaps a human 7q locus for obesity. A search for between‐strain sequence polymorphisms in the leptin and NPY genes was unrevealing. Discussion: In mice, loci influencing exploratory activity play a modest role in body‐weight regulation. Some forms of obesity may emerge from loci regulating normal body weight.  相似文献   

20.
Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice   总被引:6,自引:6,他引:0  
The genetic basis of variation in obesity in human populations is thought to be owing to many genes of relatively small effect and their interactions. The LG/J by SM/J intercross of mouse inbred strains provides an excellent model system in which to investigate multigenic obesity. We previously mapped a large number of quantitative trait loci (QTLs) affecting adult body weight in this cross. We map body composition traits, adiposity, and skeletal size, in a replicate F2 intercross of the same two strains containing 510 individuals. Using interval-mapping methods, we located eight QTLs affecting adiposity (Adip1–8). Two of these adiposity loci also affected tail length (Adip4 and Adip6) along with seven additional tail length QTLs (Skl1–7). A further four QTLs (Wt1–4) affect adult weight but not body composition. These QTLs have relatively small effects, typically about 0.2–0.4 standard deviation units, and account for between 3% and 10% of the variance in individual characters. All QTLs participated in epistatic interactions with other QTLs. Most of these interactions were due to additive-by-additive epistasis, which can nullify the apparent effects of single loci in our population. Adip8 interacts with all the other adiposity QTLs and seems to play a central role in the genetic system affecting obesity in this cross. Only two adiposity QTLs, Adip4 and Adip6, also affect tail length, indicating largely separate genetic control of variation in adiposity and skeletal size. Body size and obesity QTLs in the same locations as those discovered here are commonly found in mapping experiments with other mouse strains. Received: 11 January 2000 / Accepted: 17 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号