首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using isolated rat liver mitochondria, which have previously been shown to carry out true replicative DNA synthesis, we have obtained results which are in accord with the presence and functioning of a DNA gyrase in this organelle. The effects of the Escherichia coli DNA gyrase inhibitors, novobiocin, coumermycin, nalidixic acid and oxolinic acid, upon mtDNA replication suggest the involvement of the putative mitochondrial enzyme in various aspects of this process. First, the preferential inhibition of [3H]dATP incorporation into highly supercoiled DNA together with the appearance of labeled, relaxed DNA are consistent with the involvement of a gyrase in the process of generating negative supercoils in mature mtDNA. Second, the overall depression of incorporation of labeled dATP into mtDNA, including the reduction of radioactivity incorporated into replicative intermediates, suggests a 'swivelase' role for the putative gyrase, and this hypothesis is further supported by results obtained on sucrose gradient centrifugation of heat-denatured, D-loop mtDNA. Here, the synthesis of the completed clean circles is inhibited while 9 S initiator strand synthesis is not, suggesting that chain elongation is blocked by the gyrase inhibitors.  相似文献   

2.
Using isolated rat liver mitochondria, which have previously been shown to carry out true replicative DNA synthesis, we have obtained results which are in accord with the presence and functioning of a DNA gyrase in this organelle. The effects of the Escherichia coli DNA gyrase inhibitors, novobiocin, coumermycin, nalidixic acid and oxolinic acid, upon mtDNA replication suggest the involvement of the putative mitochondrial enzyme in various aspects of this process. First, the preferential inhibition of [3H]dATP incorporation into highly supercoiled DNA together with the appearance of labeled, relaxed DNA are consistent with the involvement of a gyrase in the process of generating negative supercoils in mature mtDNA. Second, the overall depression of incorporation of labeled dATP into mtDNA, including the reduction of radioactivity incorporated into replicative intermediates, suggests a ‘swivelase’ role for the putative gyrase, and this hypothesis is further supported by results obtained on sucrose gradient centrifugation of heat-denatured, d-loop mtDNA. Here, the synthesis of the completed clean circles is inhibited while 9 S initiator strand synthesis is not, suggesting that chain elongation is blocked by the gyrase inhibitors.  相似文献   

3.
DNA gyrase, a type II topoisomerase, is the sole supercoiling activity in the cell and is essential for cell survival. There are two proteinaceous inhibitors of DNA gyrase that are plasmid-borne and ensure maintenance of the plasmids in bacterial populations. However, the physiological role of GyrI, an inhibitor of DNA gyrase encoded by the Escherichia coli genome, has been elusive. Previously, we have shown that GyrI imparts resistance against microcin B17 and CcdB. Here, we find that GyrI provided partial/limited protection against the quinolone class of gyrase inhibitors but had no effect on inhibitors that interfere with the ATPase activity of the enzyme. Moreover, GyrI negated the effect of alkylating agents, such as mitomycin C and N-methyl-N-nitro-N-nitrosoguanidine, that act independently of DNA gyrase. Hence, in vivo, GyrI appears to be involved in reducing DNA damage from many sources. In contrast, GyrI is not effective against lesions induced by ultraviolet radiation. Furthermore, the expression of GyrI does not significantly alter the topology of DNA. Thus, although isolated as an inhibitor of DNA gyrase, GyrI seems to have a broader role in vivo than previously envisaged.  相似文献   

4.
A key step in the supercoiling reaction is the DNA gyrase-mediated cleavage and religation step of double-stranded DNA. Footprinting studies suggest that the DNA gyrase binding site is 100-150 bp long and that the DNA is wrapped around the enzyme with the cleavage site located near the center of the fragment. Subunit A inhibitors interrupt this cleavage and resealing cycle and result in cleavage occurring at preferred sites. We have been able to show that even a 30 bp DNA fragment containing a 20 bp preferred cleavage sequence from the pBR322 plasmid was a substrate for the DNA gyrase-mediated cleavage reaction in the presence of inhibitors. This DNA fragment was cleaved, although with reduced efficiency, at the same sites as a 122 bp DNA fragment. A 20 bp DNA fragment was cleaved with low efficiency at one of these sites and a 10 bp DNA fragment was no longer a substrate. We therefore propose that subunit A inhibitors interact with DNA at inhibitor-specific positions, thus determining cleavage sites by forming ternary complexes between DNA, inhibitors and DNA gyrase.  相似文献   

5.
Development of novel DNA gyrase B inhibitors is an important field of antibacterial drug discovery whose aim is to introduce a more effective representative of this mechanistic class into the clinic. In the present study, two new series of Escherichia coli DNA gyrase inhibitors bearing the 4,5-dibromopyrrolamide moiety have been designed and synthesized. 4,5,6,7-Tetrahydrobenzo[1,2-d]thiazole-2,6-diamine derivatives inhibited E. coli DNA gyrase in the submicromolar to low micromolar range (IC50 values between 0.891 and 10.4 μM). Their “ring-opened” analogues, based on the 2-(2-aminothiazol-4-yl)acetic acid scaffold, displayed weaker DNA gyrase inhibition with IC50 values between 15.9 and 169 μM. Molecular docking experiments were conducted to study the binding modes of inhibitors.  相似文献   

6.
7.
The rise in bacterial resistance to antibiotics demonstrates the medical need for new antibacterial agents. One approach to this problem is to identify new antibacterials that act through validated drug targets such as bacterial DNA gyrase. DNA gyrase uses the energy of ATP hydrolysis to introduce negative supercoils into plasmid and chromosomal DNA and is essential for DNA replication. Inhibition of the ATPase activity of DNA gyrase is the mechanism by which coumarin-class antibiotics such as novobiocin inhibit bacterial growth. Although ATPase inhibitors exhibit potent antibacterial activity against gram-positive pathogens, no gyrase ATPase activity from a gram-positive organism is described in the literature. To address this, we developed and optimized an enzyme-coupled phosphate assay and used this assay to characterize the ATPase kinetics of Streptococcus pneumoniae gyrase. The S. pneumoniae enzyme exhibits cooperativity with ATP and requires organic potassium salts. We also studied inhibition of the enzyme by novobiocin. Apparent inhibition constants for novobiocin increased linearly with ATP concentration, indicative of an ATP-competitive mechanism. Similar binding affinities were measured by isothermal titration calorimetry. These results reveal unique features of the S. pneumoniae DNA gyrase ATPase and demonstrate the utility of the assay for screening and kinetic characterization of ATPase inhibitors.  相似文献   

8.
Fighting bacterial resistance is a challenging task in the field of medicinal chemistry. DNA gyrase represents a validated antibacterial target and has drawn much interest in recent years. By a structure-based approach we have previously discovered compound 1, an indolinone derivative, possessing inhibitory activity against DNA gyrase. In the present paper, a detailed biophysical characterization of this inhibitor is described. Using mass spectrometry, NMR spectroscopy, and fluorescence experiments we have demonstrated that compound 1 binds reversibly to the ATP-binding site of the 24 kDa N-terminal fragment of DNA gyrase B from Escherichia coli (GyrB24) with low micromolar affinity. Based on these data, a plausible molecular model of compound 1 in the active site of GyrB24 was constructed. The predicted binding mode explains the competitive inhibitory mechanism with respect to ATP and forms a useful basis for further development of potent DNA gyrase inhibitors.  相似文献   

9.
Summary When spores of a thymine-requiring mutant of Bacillus subtilis were germinated in a medium lacking thymine, an initiation potential (an ability to initiate and complete one round of replication in the presence of thymine and in the absence of protein and RNA synthesis) was formed for both chromosomal and plasmid replication. The effect of two inhibitors of DNA gyrase, novobiocin (Nov) and nalidixic acid (Nal), on the initiation potential formed during germination for chromosomal and plasmid replication was examined.Nov and Nal inhibited formation of the initiation potential completely if the drug was added at the onset of germination. In contrast, initiation of chromosomal and plasmid replication occurred in the presence of DNA gyrase inhibitors when the drug was added after the initiation potential had been fully formed. However, chromosomal replication initiated in the presence of the inhibitors ceased after a fragment of approximately 15 MD (15×106 daltons) had been replicated, and plasmid replication was limited to one round of replication in approximately half of the plasmid molecules present in the spores.Furthermore the initiation potential for both chromosomal and plasmid replication though established was destroyed gradually but steadily by prolonged incubation with Nov in the absence of thymine. In addition, relaxation of the superhelical structure of plasmid DNA during incubation with Nov was observed in vivo. This relaxation was blocked by ethidium bromide, which dissociated the S-complex. On the other hand, incubation with Nal did not reduce the initiation potential nor did it change the superhelicity of the plasmid DNA in vivo. This is consistent with the known effect of gyrase inhibitors on the enzymatic activity of DNA gyrase.These results clearly demonstrate that both the action of DNA gyrase and the superhelical structure of the DNA are essential for the initiation of chromosomal and plasmid replication. The specific chromosome organization essential for initiation and elongation and the role of DNA gyrase are discussed.IV of this series is Yoshikawa et al. 1980  相似文献   

10.
The effect of the deoxyribonucleic acid (DNA) gyrase inhibitors coumermycin A1, novobiocin, and oxolinic acid on ribonucleic acid (RNA) synthesis in Escherichia coli was studied in vivo and in vitro. Preferential inhibition of ribosomal RNA (rRNA) synthesis was observed. No effect of oxolinic acid and coumermycin on rRNA synthesis was seen in mutants having a DNA gyrase which is resistant to these inhibitors. In a temperature-sensitive DNA gyrase mutant rRNA synthesis was decreased at nonpermissive temperatures. Thus, a functional DNA gyrase is required for rRNA synthesis. Purified DNA gyrase had no effect on rRNA synthesis in a purified system. However, DNA gyrase does show preferential stimulation of rRNA synthesis in a system supplemented with other proteins. Apparently, DNA gyrase stimulation of rRNA synthesis requires another protein.  相似文献   

11.
12.
DNA gyrase is the target of two plasmid-encoded toxins CcdB and microcin B17, which ensure plasmid maintenance. These proteins stabilize gyrase–DNA covalent complexes leading to double-strand breaks in the genome. In contrast, the physiological role of chromosomally encoded inhibitor of DNA gyrase (GyrI) in Escherichia coli is unclear and its mechanism of inhibition has not been established. We demonstrate that the mode of inhibition of GyrI is distinct from all other gyrase inhibitors. It inhibits DNA gyrase prior to, or at the step of, binding of DNA by the enzyme. GyrI reduces intrinsic as well as toxin-stabilized gyrase–DNA covalent complexes. Furthermore, GyrI reduces microcin B17-mediated double-strand breaks in vivo, imparting protection to the cells against the toxin, substantiating the in vitro results. Thus, GyrI is an antidote to DNA gyrase-specific proteinaceous poisons encoded by plasmid addiction systems.  相似文献   

13.
Incorporation of labeled deoxynucleoside triphosphates into mtDNA by isolated rat liver mitochondria has been shown previously to reflect DNA replication. We have used this system to seek evidence for a mtDNA gyrase. Coumermycin, novobiocin, nalidixic acid, and oxolinic acid are known to be inhibitors of Escherichia coli gyrase, to inhibit E. coli DNA replication, to abolish colicin E1 replication, and to depress the supercoiling of phage lambda DNA, the last two via inhibition of the DNA gyrase. Our results show that these agents inhibit [3H]dATP incorporation into bulk mtDNA at concentrations similar to those used for E. coli. Analysis by sucrose gradient sedimentation confirms the inhibition and shows further that the synthesis of the highly supercoiled form of mtDNA (i.e. 39 S DNA) is depressed relative to other mtDNA forms (i.e. 27 S DNA), suggesting an inhibition of the supercoiling process. Analysis of the DNA by CsCl/propidium diiodide centrifugation shows, in addition, that incubation with coumermycin results in the appearance of a mtDNA form shown to be relaxed mtDNA. The results are consistent with the occurrence of a mtDNA gyrase and its operation in mtDNA replication.  相似文献   

14.
Tuberculosis and other bacterial diseases represent a significant threat to human health. The DNA topoisomerases are excellent targets for chemotherapy, and DNA gyrase in particular is a well-validated target for antibacterial agents. Naphthoquinones (e.g. diospyrin and 7-methyljuglone) have been shown to have therapeutic potential, particularly against Mycobacterium tuberculosis. We have found that these compounds are inhibitors of the supercoiling reaction catalyzed by M. tuberculosis gyrase and other gyrases. Our evidence strongly suggests that the compounds bind to the N-terminal domain of GyrB, which contains the ATPase active site, but are not competitive inhibitors of the ATPase reaction. We propose that naphthoquinones bind to GyrB at a novel site close to the ATPase site. This novel mode of action could be exploited to develop new antibacterial agents.  相似文献   

15.
Type IA DNA topoisomerases, typically found in bacteria, are essential enzymes that catalyse the DNA relaxation of negative supercoils. DNA gyrase is the only type II topoisomerase that can carry out the opposite reaction (i.e. the introduction of the DNA supercoils). A number of diverse molecules target DNA gyrase. However, inhibitors that arrest the activity of bacterial topoisomerase I at low concentrations remain to be identified. Towards this end, as a proof of principle, monoclonal antibodies that inhibit Mycobacterium smegmatis topoisomerase I have been characterized and the specific inhibition of Mycobacterium smegmatis topoisomerase I by a monoclonal antibody, 2F3G4, at a nanomolar concentration is described. The enzyme-bound monoclonal antibody stimulated the first transesterification reaction leading to enhanced DNA cleavage, without significantly altering the religation activity of the enzyme. The stimulated DNA cleavage resulted in perturbation of the cleavage-religation equilibrium, increasing single-strand nicks and protein-DNA covalent adducts. Monoclonal antibodies with such a mechanism of inhibition can serve as invaluable tools for probing the structure and mechanism of the enzyme, as well as in the design of novel inhibitors that arrest enzyme activity.  相似文献   

16.
Glutamate racemase (MurI) catalyzes the interconversion of l-glutamate to d-glutamate, one of the essential amino acids present in the peptidoglycan. In addition to this essential enzymatic function, MurI from Escherichia coli, Bacillus subtilis and Mycobacterium tuberculosis inhibit DNA gyrase activity. A single gene for murI found in the Mycobacterium smegmatis genome was cloned and overexpressed in a homologous expression system to obtain a highly soluble enzyme. In addition to the racemization activity, M. smegmatis MurI inhibits DNA gyrase activity by preventing DNA binding of gyrase. The sequestration of the gyrase by MurI results in inhibition of all reactions catalyzed by DNA gyrase. More importantly, MurI overexpression in vivo in mycobacterial cells provides protection against the action of ciprofloxacin. The DNA gyrase-inhibitory property thus appears to be a typical characteristic of MurI and would have probably evolved to either modulate the function of the essential housekeeping enzyme or to provide protection to gyrase against gyrase inhibitors, which cause double-strand breaks in the genome.  相似文献   

17.
DNA topoisomerases as targets for chemotherapy   总被引:5,自引:0,他引:5  
K M Rose 《FASEB journal》1988,2(9):2474-2478
  相似文献   

18.
Previously we have reported on a series of pyridine-3-carboxamide inhibitors of DNA gyrase and DNA topoisomerase IV that were designed using a computational de novo design approach and which showed promising antibacterial properties. Herein we describe the synthesis of additional examples from this series aimed specifically at DNA gyrase, along with crystal structures confirming the predicted mode of binding and in vitro ADME data which describe the drug-likeness of these compounds.  相似文献   

19.
DNA gyrase supercoils DNA in bacteria. The fact that it is essential in all bacteria and absent from eukaryotes makes it an ideal drug target. We discuss the action of coumarin and quinolone drugs on gyrase. In the case of coumarins, the drugs are known to be competitive inhibitors of the gyrase ATPase reaction. From a combination of structural and biochemical studies, the molecular details of the gyrase-coumarin complex are well established. In the case of quinolones, the drugs are thought to act by stabilising a cleavage complex between gyrase and DNA that arrests polymerases in vivo. The exact nature of the gyrase-quinolone-DNA complex is not known; we propose a model for this complex based on structural and biochemical data.  相似文献   

20.
Glutamate racemase (MurI) catalyses the conversion of l-glutamate to d-glutamate, an important component of the bacterial cell wall. MurI from Escherichia coli inhibits DNA gyrase in presence of the peptidoglycan precursor. Amongst the two-glutamate racemases found in Bacillus subtilis, only one inhibits gyrase, in absence of the precursor. Mycobacterium tuberculosis has a single gene encoding glutamate racemase. Action of M.tuberculosis MurI on DNA gyrase activity has been examined and its mode of action elucidated. We demonstrate that mycobacterial MurI inhibits DNA gyrase activity, in addition to its precursor independent racemization function. The inhibition is not species-specific as E.coli gyrase is also inhibited but is enzyme-specific as topoisomerase I activity remains unaltered. The mechanism of inhibition is different from other well-known gyrase inhibitors. MurI binds to GyrA subunit of the enzyme leading to a decrease in DNA-binding of the holoenzyme. The sequestration of the gyrase by MurI results in inhibition of all reactions catalysed by DNA gyrase. MurI is thus not a typical potent inhibitor of DNA gyrase and instead its role could be in modulation of the gyrase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号