首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H. Yura  A. Ogura 《Plant Ecology》2006,185(2):199-208
Intensity of the abrasive effect of wind-borne sand – sandblasting – in addition to other environmental factors was measured at two vegetation zones on a sandy beach and one site at an inland area. One zone on the beach included foredunes sparsely vegetated by dune species such as Carex kobomugi and Calystegia soldanella. The other zone which was located ∼50 m inland from the first zone was flat grassland dominated by inland species such as Miscanthus sinensis and Imperata cylindrica var. Koenigii. The inland site consisted of short grassland located 3 km inland from the beach. Intensity of sandblasting was estimated by the whiteness of a transparent plastic sheet exposed to the air for 2 weeks. This sheet turned whitely opaque when it was abraded by wind-borne sand. The other environmental factors measured at the beach were intensity of salt spray, soil water content, soil salinity, and sand accumulation, while intensity of salt spray was the only additional factor measured at the inland site. Intensity of sandblasting was considerably higher at the foredune zone, while that at the grassland zone was as low as that at the inland site. Considerable salt spray was detected at the foredune and grassland zones. Differences in other environmental factors were small between the two zones on the beach. In order to compare the difference in tolerance to sandblasting, a jet of sand was applied to one ordinary species, C. kobomugi, from the foredune and two species, M. sinensis and I. cylindrica, from the grassland zone. The difference in tolerance was determined by the decrease in the area of green leaf after applying sandblasting with commercial sandblaster and/or spraying with sea water. M. sinensis and I. cylindrica lost much of the leaf area after sandblasting and salt spraying, while C. kobomugi lost little. These results indicated that one of the characteristic environmental factors of a foredune is the high intensity of sandblasting accompanied by salt spray, and that species found in the foredune are more tolerant to sandblasting than species distributing in more inland areas.  相似文献   

2.
Low water and nutrient availability and significant sand movement, salt spray, and soil salinity are typical of coastal dunes. These conditions are generally unfavorable for the various life stages of plants and especially for seedlings. However, the intensity of these stresses decreases landward, even over short distances, with significant effects on community composition. On coastal dunes in subarctic Québec, Canada, Honckenya peploides (Caryophyllaceae) colonizes the upper beach where it forms small mounds called embryo dunes. Leymus mollis (Poaceae) is mostly restricted to the foredune; however, a few individuals successfully establish on the upper beach, particularly on embryo dunes. We hypothesized that this differential distribution is associated with differences in the tolerance of the two species' seedlings to physical stresses. Honckenya peploides and L. mollis seedling tolerance to sand burial, salt spray, soil salinity, and nutrient and water availability was assessed in greenhouse experiments. Unexpectedly, our results showed that tolerance to sand burial, salt spray, and soil salinity was lower for H. peploides than for L. mollis. If seeds are available and seedlings tolerate the conditions prevailing on the upper beach well, why are mature L. mollis individuals rare in this habitat? We suggest that massive abrasion events (e.g., violent storm waves and ice thrust) restrict the presence of the species on the upper beach.  相似文献   

3.
Ecophysiological strategies of coastal halophytes from foredunes and salt marshes are discussed. A comparison is made of the factors that limit growth in salt marshes and sand dunes. In salt marshes, zonation and succession are primarily governed by variation in soil salinity, which strongly depends on inundation with seawater. Results are described of experiments which aim at separating salinity and inundation effects on growth, osmotic and mineral relations in a comparison of salt-marsh halophytes. The growth response of plants cannot simply be correlated (and causally explained) with the concentration of Na, Cl, and K in the tissues. Also, the compatible osmotic solutes proline and methylated quaternary ammonium compounds may accumulate both in species with a positive response to increased salinity and in species with a growth reduction under seawater inundation. More likely inadequate adaptation of the plants water potential with these components is partly the cause of retarded growth. Disfunctioning of the plant in this respect may be at three levels: (a) total water potential of the plant, (b) (loss) of turgor pressure potential; (c) regulation at the cellular level. The ecological importance of some factors in seawater other than sodium chloride is considered. In coastal sand dunes airborne rather than soil salinity limits plant growth, together with the effects of abrasion, sand accretion, drought and the poor nutrient status of the dune sand. Adaptations of sand-dune species to these factors may consist of: large seeds with storage tissue germinating in the dark and seedling growth enough to emerge through the accreted sand. Aerial parts must be resistant to mechanical damage (high wind speed and abrasion), possibly by a sclerophyllous and tough structure. Efficient nutrient uptake, translocation and retranslocation seem to help survive sand-dune species in a nutrient-poor rooting medium.  相似文献   

4.
More than 50 years ago it was proposed that zonation of major plant species on coastal dunes was determined by salt spray. Here, we argue against this hypothesis because (i) salt concentrations rarely exceed toxic levels; (ii) high precipitation in temperate latitudes washes the salt off the plants; (iii) major salt spray events occur in late autumn and winter when plants are dormant; and (iv) zonation also occurs on lacustrine dunes. Instead, we show evidence that zonation may be caused by burial because plant distribution was correlated with sand deposition and species were eliminated when burial exceeded their limits of tolerance, thus creating zones of different plant species. We conclude that in temperate regions (i) burial by sand may be among the most important factors in zonation, while salt spray may play a secondary role; and (ii) single environmental factors cannot be the determinants of a phenomenon as complex as species zonation.  相似文献   

5.
Abstract Spinifex sericeus, a common coastal sand dune grass, typically exhibits decreased vigour in the more stabilized section of the dunes when compared with the active foredune. These differences in vigour appear to be related to different environmental conditions across the dunes such as sand burial and salt spray deposition, both generally decreasing with distance inland. An experiment following the fate of foliar and root applications of 22Na indicated that it may be taken up by the roots or the foliage and then translocated throughout the whole plant, and perhaps even extruded by the roots. Salt spray appeared to have a positive effect on the growth of S. sericeus when applied in conjunction with N and P but had no effect when N and P were not added. Adding acid-washed or non acid-washed foredune sand also resulted in a positive growth response. The results of these experiments indicate that the vigorous growth of S. sericeus on the dynamic sections of the foredunes is due to a stimulation of growth caused by sand deposition.  相似文献   

6.
Gender phenotypes of Thymelaea hirsuta (L.) Endl. were surveyed in six major habitats in the western Mediterranean region of Egypt. Five gender phenotypes were observed at all sites: subandroecious (male), subgynoecious (female), protogynous, protandrous, and gender-labile individuals. Patterns of vegetative growth, reproductive effort, and sex-size relationships were also determined. Females and males were comparable in overall abundance (35.5% and 30.2%, respectively). However, the frequency of sex forms varied significantly among habitats. Plant size (canopy volume) was used as a measure of environmental quality for the species: the coastal dunes were by far the most favorable habitat, followed by the nonsaline depressions, inland plateau, and inland siliceous deposits. The smallest plants were associated with the inland ridges and saline depressions. Protandrous individuals, and female shrubs at the more favorable habitats (e.g., the coastal dunes and nonsaline depressions), had greater canopy volume than males. In contrast, males were larger than females at the less favorable habitats (e.g., the inland plateau and saline depressions). Advantageous growth conditions at the coastal dunes are demonstrated by the greater rate of increase in crown diameter and crown volume noted there, for each size class and sex form. The greatest rates of increase were present in smaller-sized individuals. Size differences between the sex forms were considered in terms of trade-offs between individual growth rate (GR) and reproductive effort (RE); evidence of a trade-off was mixed. Indeed, in a comparison of GR and RE at two extremes of habitat (coastal dune vs. inland plateau), females had greater GR and greater RE at the relatively benign coastal dunes, while at the more harsh, inland plateau site males showed greater GR and RE than females. Peak reproductive effort varied significantly with gender phenotype and habitat type.  相似文献   

7.
RANDALL, R. E., 1989. Shingle habitats in the British Isles . Shingle is the term applied to sediments larger in diameter than sand but smaller than boulders. Around Great Britain there are almost 900 km of pure shingle and vast stretches of rock/shingle, sand/shingle and mud/shingle mixtures. Outside Japan, New Zealand and north-west Europe, shingle is an uncommon coastal sediment. Shingle may form fringing beaches, spits, bars, cuspate forelands and offshore barrier islands, depending upon available supply of sedimentary material and coastal topography.
Species composition on shingle features is partly determined by climate which affects the geographic range of certain species. The other major factors are beach stability and beach composition. Climate results in distinctive patterns in the flora but within the each climate zone beach movement will affect the quantity of annuals, short-lived or long-lived perennials present. The presence or absence and nature of the fine material within the shingle will cause different combinations of species ecologically related to those of sand dunes, salt-marsh or cliff. Coastal shingle vegetation has a distinctive flora which contains several rare or declining species as well as some common coastal and ruderal plants.
At the largest shingle sites a successional sequence can be recorded which initiates with halophytic forbs near the foreshore and moves through neutral to acid grassland species with shrubs and prostrate scrub in the more inland areas.  相似文献   

8.
Thirty-four vegetation clusters identified in the present study, after the application of TWINSPAN and DCA multivariate techniques, were assigned into 8 vegetation types, each of definite vegetation and habitat characters. The suggested vegetation types are well segregated along the DCA axis one which reflects soil moisture, salinity (as indicated by EC values), fertility (as indicated by the organic matter and nitrogen contents) and species diversity gradients. In general, soil moisture and soil fertility increase and species diversity decreases with the following sequence of vegetation types:Echinops spinosissimus-Ononis serrata on inland sand dunes,Pancratium maritimum on coastal sand dunes,Halocnemum strobilaceum-Salsola kali in saline sand deposits,Atriplex halimus-Chenopodium murale along the terraces and slopes of drains,Arthrocnemum glaucum-Tamarix nilotica in salt marshes,Chenopodium murale along the slopes of drains,Phragmites australis along the littoral zones of drains, andLemna gibba-Potamogeton crispus in the water zone. This sequence reflects also a gradient of human interference, starting with the vegetation of the less disturbed habitats (sand dunes and saline sand deposits) and ending with the fully man-made habitats (drain zones).  相似文献   

9.
Responses of seed germination to salinity were examined using 37 species collected from salt marshes, cliffs, and fore (unstable) and hind (stable) sand dunes along Japanese coasts. For comparison, seed germination of nine inland species was also examined. The soil salinities in salt marshes ranged from 150 to 300 mmol/L NaCl, whereas those in fore and hind dunes ranged from 0 to 150 mmol/L NaCl, with a few exceptions. Cliff soils showed relatively high salinities up to 300 mmol/L NaCl. Ciff and foredune soils that encountered a typhoon and storm showed high salinities >300 mmol/L NaCl. Salt tolerance in seed germination of coastal plants was ordered by comparing the responses of percentage and rate of germination to salinity conditions up to 200 mmol/L NaCl, being in the order of salt marsh>cliff>foredune≅hind dune≅inland. Thse results indicate that salt tolerance in seed germination of coastal plants is closely related to the salinity conditions of their habitats. Germination experiments under favorable conditions showed that a high percentage of the seeds of salt marsh species germinate rapidly, those of diff species germinate slowly and those of foredune species exhibit a low percentage and low rate of germination. It seems that these germination characteristics contribute to the success of germination at the ‘safe site’ and the subsequent survivorship of emerged plants in their natural habitats.  相似文献   

10.
Coastal sand dunes are dynamic ecosystems characterized by strong abiotic gradients from the seashore inland. Due to significant differences in the abiotic parameters in such an environment, there is great interest in biotic adaptation in these habitats. The aim of the present study, which was conducted in the northern Sharon sand-dune area of Israel, was to illustrate the spatial changes of a soil microarthropod community along a gradient from the seashore inland. Soil samples were collected from the 0–10 cm depth at five locations at different distances, from the seashore inland. Samples were taken from the bare open spaces during the wet winter and dry summer seasons. The soil microarthropod community exhibited dependence both on seasonality and sampling location across the gradient. The community was more abundant during the wet winter seasons, with an increasing trend from the shore inland, while during the dry summers, such a trend was not observed and community density was lower. The dominant groups within soil Acari were Prostigmata and Endeostigmata, groups known to have many representatives with adaptation to xeric or psammic environments. In addition, mite diversity tended to be higher at the more distant locations from the seashore, and lower at the closer locations, a trend that appeared only during the wet winters. This study demonstrated the heterogeneity of a soil microarthropod community in a coastal dune field in a Mediterranean ecosystem, indicating that the gradient abiotic parameters also affect the abundance and composition of a soil microarthropod community in sand dunes.  相似文献   

11.
Restoration of coastal habitat fragmented, degraded, or destroyed by development and climate‐related processes such as sea level rise and storm surge usually involves planting native plants to restore habitat structure, but whether and how restored areas benefit taxa other than plants is rarely reported. Installing restoration plantings is one method used to build habitat such as beach dunes where dunes have been lost, potentially creating habitat for dune‐dependent species. We compared use of natural vegetated dunes, open sand gaps, and restoration plantings (habitat treatment) by Perdido Key beach mice (Peromyscus polionotus trissyllepsis) over 3 years using tracking tubes to assess the value of restoration plantings for beach mice. Tubes were monitored in two seasons (early and mid‐summer), and under new and full moon conditions. Mice used restoration plantings less than natural vegetated dunes but more than open sand gaps, which suggests restoration plantings may facilitate movement of mice across fragmented areas. Both season and moon phase influenced the effect of habitat treatment, interactions which may be attributable to perceived risk associated with movement under a combination of different conditions of ambient light, vegetation cover, and habitat novelty. Our results show restoration plantings provide habitat for movement and foraging, and may ameliorate some consequences of sea level rise and storms for beach mice and potentially other dune‐dependent species into the future.  相似文献   

12.
Sandy coastlines are dynamic environments with potential for biodiverse habitats, such as green beaches. Green beach vegetation can develop on nutrient-poor beaches landward from embryo dunes. It is characterised by low-dynamic coastal wetland habitat such as salt marshes and dune slacks. It has been hypothesised that the establishment of green beach vegetation is facilitated by the shelter provided by embryo dunes, however evidence is lacking.We explored the importance of geomorphology and soil conditions on the species richness and turnover of green beach vegetation over a time period of 10 years. We recorded 107 plots along 11 transects over a gradient from beach to dune on the island of Schiermonnikoog, the Netherlands. We characterised transect geomorphology at transect level and soil conditions and vegetation at plot level in 2006 and 2016.We found that the green beach vegetation was highly dynamic, total plant cover increased by 62% within 10 years. In 2006 beach width was an important factor in explaining species richness, with the highest number of species occurring on narrow beaches with a large volume of embryo dunes. In 2016, species richness was positively associated with the build-up of organic matter. Overall species richness declined relative to 2006 and was accompanied by an increase in elevation due to sand burial and the expansion of embryo dune volume.Our data suggests that geomorphology influenced the vegetation indirectly by affecting sand burial rate. Plant species richness declined less at sheltered conditions where sand burial was limited, allowing the build-up of organic matter. This indicates a time-dependent relationship between the development of embryo dunes and plant species richness: embryo dunes can be a source of shelter, thus increasing species richness, but can compete for space over time, lowering species richness again. Our results are relevant for engineering and management of biodiverse sandy shores.  相似文献   

13.
A fieldsurvey was made to elucidate whether salt spray is a major factor in preventing a common inland weed,Solidago altissima, from being established on the seashore of Boso Peninsula. Seasonal changes in the intensity of salt spray, sodium content in the soil water and soil water contents were measured at the seashore and inland. Seeds ofS. altissima were sown at both sites with those of a common maritime species,Chrysanthemum pacificum. The number of surviving shoots of the seedlings were periodically counted for 1 year. The intensity of the salt spray, sodium content and water contents of the soil on the seashore fluctuated seasonally. There were some periods when the intensity of salt spray was comparable to that of the inland site. Most of theS. altissima seedlings survived at the inland site. AllS. altissima seedlings germinated at the seashore were completely eliminated. The death rate ofS altissima seedlings at the seashore was not constant. Ninety-five percent of theS. altissima seedling in total died out during the four periods of intensive salt spray. The death rate ofC. pacificum seedlings on the seashore was not especially high during those periods. Correlation between seasonal changes in the death rate ofS. altissima seedlings and the sodium content or water content of the soil was low. These results indicate that intensive salt spray, intermittently blown in from the sea, is one of the most critical environmental factors that eliminatesS. altissima from the seashore.  相似文献   

14.
Lake Biwa, one of the few ancient lakes in the world, harbors many coastal species that commonly inhabit seashores. The beach pea (Lathyrus japonicus) is a typical coastal species of this freshwater lake, and morphological and genetic differentiation between inland and coastal populations of this species have been reported. Inland and coastal habitats inflict distinct environmental stresses to plants, the latter imposing salt stress and high-light intensity, which leads to physiological differentiation. These abiotic stresses affect phenolic compounds, which play an important role in the response of plants to the toxic by-products of stress metabolism. We investigated physiological differentiation of phenolic compounds of the beach pea between inland and coastal habitats using high-performance liquid chromatography (HPLC) analysis. Flavonoid composition analyses revealed that patterns of flavonoid composition of inland populations at Lake Biwa were differentiated from those of coastal populations. All Lake Biwa individuals were fixed in the same flavonols glycosylated at 3- and 7-positions. In contrast, most coastal individuals contained flavonols glycosylated at 3-position alone, and these populations exhibited higher variation in flavonoid composition compared to among/within inland populations. Variation was likely lower in inland populations because of a bottleneck during landlocked periods, which is consistent with previous phylogeographic studies. A qualitative HPLC survey of flavonoid content revealed substantial variation among individuals regardless of locality. These results suggest that changes in the habitat environment may have led to beach pea acclimation via alteration of the quantity and quality of flavonoids.  相似文献   

15.
Summary Seed and transplanted adult plants from populations of Festuca rubra, collected from inland, salt-marsh and sand-dune sites were grown on culture solution with added sodium chloride. The growth of the populations of the three habitats was reduced differentially by salt. The salt marsh ecotype Festuca rubra ssp. litoralis was only slightly affected and the inland ecotype F. rubra ssp. rubra was severely retarded at 60 mM NaCl. The dune ecotype F. rubra ssp. arenaria had an intermediate tolerance. The tolerant ecotypes accumulated less sodium chloride as compared to the sensitive ecotype, suggesting that salt tolerance is caused in part by salt exclusion.In addition, the dune ecotype F.r. arenaria appeared to be more drought tolerant than the salt marsh ecotype. Abscission of salt-saturated leaves does not function as an adaptation to salinity in Festuca rubra.All three ecotypes accumulated proline with increased salinity. The response was most pronounced in the drought tolerant F.r. arenaria, indicating that proline accumulation is a response to osmotic stress rather than to ion-specific effects of salinity. The observed differences in salt tolerance may be explained by differential sensitivity to toxic effects of sodium chloride.The occurrence on a beach plain of closely adjacent populations of F.r. arenaria and F.r. litoralis, differing markedly in salt tolerance, is briefly discussed.  相似文献   

16.
Rising sea levels threaten coastal safety by increasing the risk of flooding. Coastal dunes provide a natural form of coastal protection. Understanding drivers that constrain early development of dunes is necessary to assess whether dune development may keep pace with sea‐level rise. In this study, we explored to what extent salt stress experienced by dune building plant species constrains their spatial distribution at the Dutch sandy coast. We conducted a field transplantation experiment and a glasshouse experiment with two dune building grasses Ammophila arenaria and Elytrigia juncea. In the field, we measured salinity and monitored growth of transplanted grasses in four vegetation zones: (I) nonvegetated beach, (II) E. juncea occurring, (III) both species co‐occurring, and (IV) A. arenaria dominant. In the glasshouse, we subjected the two species to six soil salinity treatments, with and without salt spray. We monitored biomass, photosynthesis, leaf sodium, and nutrient concentrations over a growing season. The vegetation zones were weakly associated with summer soil salinity; zone I and II were significantly more saline than zones III and IV. Ammophila arenaria performed equally (zone II) or better (zones III, IV) than E. juncea, suggesting soil salinity did not limit species performance. Both species showed severe winter mortality. In the glasshouse, A. arenaria biomass decreased linearly with soil salinity, presumably as a result of osmotic stress. Elytrigia juncea showed a nonlinear response to soil salinity with an optimum at 0.75% soil salinity. Our findings suggest that soil salinity stress either takes place in winter, or that development of vegetated dunes is less sensitive to soil salinity than hitherto expected.  相似文献   

17.
《Journal of bryology》2013,35(3):291-311
Abstract

The ability of eight mosses to with stand the harsh environment of a coastal sand-dune in Victoria (Australia) has been investigated. It is shown that some species are able to re-vegetate areas which have been disturbed by wind, rabbits and vehicles. Their differing performances in relation to growth, rhizoid strength, and withstanding salt spray and sand burial, equip them for different niches. The ratio of dry weights of gametophore/rhizoids is suggested as an indicator of stage of revegetation.  相似文献   

18.
Vegetated dunes are recognized as important natural barriers that shelter inland ecosystems and coastlines suffering daily erosive impacts of the sea and extreme events, such as tsunamis. However, societal responses to erosion and shoreline retreat often result in man-made coastal defence structures that cover part of the intertidal and upper shore zones causing coastal squeeze and habitat loss, especially for upper shore biota, such as dune plants. Coseismic uplift of up to 2.0 m on the Peninsula de Arauco (South central Chile, ca. 37.5º S) caused by the 2010 Maule earthquake drastically modified the coastal landscape, including major increases in the width of uplifted beaches and the immediate conversion of mid to low sandy intertidal habitat to supralittoral sandy habitat above the reach of average tides and waves. To investigate the early stage responses in species richness, cover and across-shore distribution of the hitherto absent dune plants, we surveyed two formerly intertidal armoured sites and a nearby intertidal unarmoured site on a sandy beach located on the uplifted coast of Llico (Peninsula de Arauco) over two years. Almost 2 years after the 2010 earthquake, dune plants began to recruit, then rapidly grew and produced dune hummocks in the new upper beach habitats created by uplift at the three sites. Initial vegetation responses were very similar among sites. However, over the course of the study, the emerging vegetated dunes of the armoured sites suffered a slowdown in the development of the spatial distribution process, and remained impoverished in species richness and cover compared to the unarmoured site. Our results suggest that when released from the effects of coastal squeeze, vegetated dunes can recover without restoration actions. However, subsequent human activities and management of newly created beach and dune habitats can significantly alter the trajectory of vegetated dune development. Management that integrates the effects of natural and human induced disturbances, and promotes the development of dune vegetation as natural barriers can provide societal and conservation benefits in coastal ecosystems.  相似文献   

19.
The stress metabolites proline, glycine betaine and sorbitol were accumulated in the leaves of some angiosperms from sand dunes and shingle. Chloride, where it was measured, was not accumulated to high concentrations in leaves suggesting that these soils are not saline. Sand dunes and shingle soils have low water-holding capacity, so it is possible that solute accumulation was a response to drought which could be of adaptive significance. In sand dunes low water availability could be associated with increased leaf temperatures because of reduced transpiration rates and high soil temperatures. The role of stress metabolites in heat tolerance was considered. Proline, betaine, sorbitol and mannitol increased the heat stability of glutamine synthetase (GS) and glutamate: oxaloacetate aminotransferase from Ammophila arenaria. For GS the effect increased with solute concentration. The polyols were more effective at high temperatures. The heat stability of GS from the moss Tortula ruraliformis and the brown alga Fucus vesiculosus was increased by mannitol. The effect of the solutes was independent of plant species and type of enzyme. It is suggested that the accumulation of solutes may have ecological importance in protecting sand-dune plants from heat damage during periods of drought.  相似文献   

20.
During the month of July 1974, various growth parameters were measured forUniola paniculata (sea oats) andAmmophila breviligulata (American beach grass), plants on the dunes of east- and south-facing beaches of Cape Hatteras. The data were grouped based on the exposure and aspect of dunes studied. ForUniola, height of the flowering culm, number of flowering culms/m2, and the height of leaves of non-flowering plants were the most diagnostic parameters. ForAmmophila, the height of the leaves of non-flowering plants was diagnostic. Generally, theUniola plants on the foredunes were taller than those on the backdunes. Plants growing on the southfacing beach were taller than their counterparts on the east-facing beach. On the southfacing beach, the side of the dunes which faces away from the ocean had the taller plants. On the east-facing beach, the side facing the ocean tended to have taller plants. ForAmmophila, the tallest plants were on the back portions of overwash areas. The next tallest occurred on the front of overwash sites. TheAmmophila plants on the ocean side of the dunes were taller than the plants on the back side of the dunes.Presented at the Seventh International Biometeorological Congress, 17–23 August 1975, College Park, Maryland, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号