首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular endothelial cell growth factor (VEGF) was originally described as a potent vascular permeability factor (VPF) that importantly contributes to vascular pathobiology. The signaling pathways that underlie VEGF/VPF-induced permeability are not well defined. Furthermore, endogenous vascular peptides that regulate this important VPF function are currently unknown. We report here that VPF significantly enhances permeability in aortic endothelial cells via a linked signaling pathway, sequentially involving Src, ERK, JNK, and phosphatidylinositol 3-kinase/AKT. This leads to the serine/threonine phosphorylation and redistribution of actin and the tight junction (TJ) proteins, zona occludens-1 and occludin, and the loss of the endothelial cell barrier architecture. Atrial natriuretic peptide (ANP) inhibited VPF signaling, TJ protein phosphorylation and localization, and VPF-induced permeability. This involved both guanylate cyclase and natriuretic peptide clearance receptors. In vivo, transgenic mice that overexpress ANP showed significantly less VPF-induced kinase activation and vascular permeability compared with non-transgenic littermates. Thus, ANP acts as an anti-permeability factor by inhibiting the signaling functions of VPF that we define here and by preserving the endothelial cell TJ functional morphology.  相似文献   

2.
Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) achieves its multiple functions by activating two receptor tyrosine kinases, Flt-1 (VEGF receptor-1) and KDR (VEGF receptor-2), both of which are selectively expressed on primary vascular endothelium. To dissect the respective signaling pathways and biological functions mediated by these receptors in primary endothelial cells with these two receptors intact, we developed a chimeric receptor system in which the N terminus of the epidermal growth factor receptor was fused to the transmembrane domain and intracellular domain of KDR (EGDR) and Flt-1 (EGLT). We observed that KDR, but not Flt-1, was responsible for VPF/VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration. Moreover, Flt-1 showed an inhibitory effect on KDR-mediated proliferation, but not migration. We also demonstrated that the inhibitory function of Flt-1 was mediated through the phosphatidylinositol 3-kinase (PI-3K)-dependent pathway because inhibitors of PI-3K as well as a dominant negative mutant of p85 (PI-3K subunit) reversed the inhibition, whereas a constitutively activated mutant of p110 introduced the inhibition to HUVEC-EGDR. We also observed that, in VPF/VEGF-stimulated HUVECs, the Flt-1/EGLT-mediated down-modulation of KDR/EGDR signaling was at or before intracellular Ca(2+) mobilization, but after KDR/EGDR phosphorylation. By mutational analysis, we further identified that the tyrosine 794 residue of Flt-1 was essential for its antiproliferative effect. Taken together, these studies contribute significantly to our understanding of the signaling pathways and biological functions triggered by KDR and Flt-1 and describe a unique mechanism in which PI-3K acts as a mediator of antiproliferation in primary vascular endothelium.  相似文献   

3.
4.
Neuropilin-1 (NRP1) is a receptor for vascular endothelial growth factor (VEGF) and plays an important role in mediating cell motility. However, the NRP1 signaling pathways important for cell motility are poorly understood. Here we report that p130(Cas) tyrosine phosphorylation is stimulated by hepatocyte growth factor and platelet-derived growth factor in U87MG glioma cells and VEGF in endothelial cells and is dependent on NRP1 via its intracellular domain. In endothelial cells, NRP1 silencing reduced, but did not prevent, VEGF receptor 2 (VEGFR2) phosphorylation, while expression of a mutant form of NRP1 lacking the intracellular domain (NRP1ΔC) did not affect receptor phosphorylation in U87MG cells or human umbilical vein endothelial cells (HUVECs). In HUVECs, NRP1 was also required for VEGF-induced phosphorylation of proline-rich tyrosine kinase 2, which was necessary for p130(Cas) phosphorylation. Importantly, knockdown of NRP1 or p130(Cas) or expression of either NRP1ΔC or a non-tyrosine-phosphorylatable substrate domain mutant protein (p130(Cas15F)) was sufficient to inhibit growth factor-mediated migration of glioma and endothelial cells. These data demonstrate for the first time the importance of the NRP1 intracellular domain in mediating a specific signaling pathway downstream of several receptor tyrosine kinases and identify a critical role for a novel NRP1-p130(Cas) pathway in the regulation of chemotaxis.  相似文献   

5.
Angiogenesis has an essential role in many important pathological and physiological settings. It has been shown that vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), a potent cytokine expressed by most malignant tumors, has critical roles in vasculogenesis and both physiological and pathological angiogenesis. We report here that at non-toxic levels, the neurotransmitter dopamine strongly and selectively inhibited the vascular permeabilizing and angiogenic activities of VPF/VEGF. Dopamine acted through D2 dopamine receptors to induce endocytosis of VEGF receptor 2, which is critical for promoting angiogenesis, thereby preventing VPF/VEGF binding, receptor phosphorylation and subsequent signaling steps. The action of dopamine was specific for VPF/VEGF and did not affect other mediators of microvascular permeability or endothelial-cell proliferation or migration. These results reveal a new link between the nervous system and angiogenesis and indicate that dopamine and other D2 receptors, already in clinical use for other purposes, might have value in anti-angiogenesis therapy.  相似文献   

6.
7.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis.  相似文献   

8.
《Cellular signalling》2014,26(6):1283-1293
The protein tyrosine phosphatase DEP-1/PTPRJ positively regulates Src family kinases and critical biological functions in endothelial and hematopoietic cells. Phosphorylation of DEP-1 on Y1311/Y1320 mediates the association and activation of Src, and promotes Src-dependent angiogenic responses including endothelial cell permeability. We have identified T1318 as a phosphorylated residue proximal to Y1320. The aim of this study was to determine if T1318 phosphorylation exerts a regulatory role over the function of DEP-1. We show that phosphorylation of DEP-1 on Y1320 was reduced when T1318 was mutated. This led to the decreased association of DEP-1 T1318A with Src, and defective Src activation in both HEK 293T and VEGF-stimulated endothelial cells. Consistent with these findings, VEGF-induced tyrosine phosphorylation of VE-cadherin, its association to β-arrestin1/2, and cell permeability were impaired in cells expressing DEP-1 T1318A. Conversely, expression of the phosphomimetic mutant DEP-1 T1318E constitutively enhanced the phosphorylation of Y1320 and VE-cadherin over that induced by WT DEP-1, and resulted in increased VEGF-dependent permeability. DEP-1 T1318 is part of a CK2 consensus phosphorylation site and was identified as a CK2 substrate. Modulation of CK2 expression or activity in endothelial cells regulated T1318 phosphorylation, and correlated with the status of Y1320 phosphorylation, Src activation, and cell permeability. CK2-dependent phosphorylation of DEP-1 T1318 promotes Y1320 phosphorylation and Src activation upon VEGF stimulation. Phosphorylation of T1318 is thus part of a regulatory mechanism that channels the activity of DEP-1 towards Src to allow its optimal activation and the promotion of endothelial cell permeability.  相似文献   

9.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurrs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis. (Mol Cell Biochem 264: 51–61, 2004)  相似文献   

10.
We investigated whether the gene expression of vascular endothelial growth factor (VEGF) and its receptors (VEGFR and neuropilin-1 [NRP-1]) could be specifically regulated during the megakaryocytic differentiation of human thrombopoietin (TPO)-dependent UT-7/TPO cells. Undifferentiated UT-7/TPO cells expressed a functional VEGFR-2, leading to VEGF binding and VEGF165-induced tyrosine phosphorylation, cell proliferation, and apoptosis inhibition. The megakaryocytic differentiation of UT-7/TPO cells on treatment with phorbol myristate acetate (PMA) was accompanied by a marked up-regulation of NRP-1 mRNA and protein expression and by an increase in VEGF-binding activity, which was mainly mediated by VEGFR-2. VEGF165 promoted the formation of complexes containing NRP-1 and VEGFR-2 in undifferentiated UT-7/TPO cells in a dose-dependent manner. Unlike human umbilical vein endothelial cells, PMA-differentiated UT-7/TPO cells exhibited complex formation between NRP-1 and VEGFR-2 even in the absence of VEGF165. These findings suggest that NRP-1-VEGFR-2-complex formation may contribute to effective cellular functions mediated by VEGF165 in megakaryocytic cells.  相似文献   

11.
The Kruppel-like factor KLF2 was recently identified as a novel regulator of endothelial pro-inflammatory and pro-thrombotic function. Here it is shown that overexpression of KLF2 potently inhibits vascular permeability factor/vascular endothelial growth factor (VEGF-A)-mediated angiogenesis and tissue edema in the nude ear mouse model of angiogenesis. In vitro, KLF2 expression retards VEGF-mediated calcium flux, proliferation and induction of pro-inflammatory factors in endothelial cells. This effect is due to a potent inhibition of VEGFR2/KDR expression and promoter activity. These observations identify KLF2 as a regulator of VEGFR2/KDR and provide a foundation for novel approaches to regulate angiogenesis.  相似文献   

12.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) exerts its multiple functions by activating two receptor tyrosine kinases, Flt-1 (VEGFR-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. To dissect the respective signaling pathways and biological functions mediated by these receptors in primary endothelial cells with two receptors intact, we, recently developed chimeric receptors (EGDR and EGLT) in which the extracellular domain of the epidermal growth factor receptor was fused to the transmembrane domain and intracellular domain of KDR and Flt-1, respectively. With these fusion receptors, we have shown that KDR is solely responsible for VPF/VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration, whereas Flt-1 showed an inhibitory effect on KDR-mediated proliferation but not migration. To further characterize the VPF/VEGF-stimulated HUVEC proliferation and migration here, we have created several EGDR mutants by site-directed mutagenesis. We show that tyrosine residues 1059 and 951 of KDR are essential for VPF/VEGF-induced HUVEC proliferation and migration, respectively. Furthermore, the mutation of tyrosine 1059 to phenylanaline results in the complete loss of KDR/EGDR-mediated intracellular Ca(2+) mobilization and MAPK phosphorylation, but the mutation of tyrosine 951 to phenylanaline did not affect these events. Our results suggest that KDR mediates different signaling pathways for HUVEC proliferation and migration and, moreover, intracellular Ca(2+) mobilization and MAPK phosphorylation are not essential for VPF/VEGF-induced HUVEC migration.  相似文献   

13.
Neuropilin-1 (NRP1) was first described as a receptor for the axon guidance molecule, Semaphorin3A, regulating the development of the nervous system. It was later shown that NRP1 is an isoform-specific receptor for vascular endothelial growth factor (VEGF), specifically VEGF(165). Much interest has been placed on the role of the various VEGF isoforms in vascular biology. Here we report that blocking NRP1 function, using a recently described antibody that inhibits VEGF(165) binding to NRP1, surprisingly reduces VEGF(121)-induced migration and sprout formation of endothelial cells. Intrigued by this observation, direct binding studies of NRP1 to various VEGF isoforms were performed. We show that VEGF(121) binds directly to NRP1; however, unlike VEGF(165), VEGF(121) is not sufficient to bridge the NRP1.VEGFR2 complex. Additionally, we show that VEGFR2 enhances VEGF(165), but not VEGF(121) binding to NRP1. We propose a new model for NRP1 interactions with various VEGF isoforms.  相似文献   

14.
Neuropilin-1 (NRP1) is a receptor for two unrelated ligands with disparate activities, vascular endothelial growth factor-165 (VEGF165), an angiogenesis factor, and semaphorin/collapsins, mediators of neuronal guidance. To determine whether semaphorin/collapsins could interact with NRP1 in nonneuronal cells, the effects of recombinant collapsin-1 on endothelial cells (EC) were examined. Collapsin-1 inhibited the motility of porcine aortic EC (PAEC) expressing NRP1 alone; coexpressing KDR and NRP1 (PAEC/KDR/NRP1), but not parental PAEC; or PAEC expressing KDR alone. The motility of PAEC expressing NRP1 was inhibited by 65-75% and this inhibition was abrogated by anti-NRP1 antibody. In contrast, VEGF165 stimulated the motility of PAEC/KDR/NRP1. When VEGF165 and collapsin-1 were added simultaneously to PAEC/KDR/NRP1, dorsal root ganglia (DRG), and COS-7/NRP1 cells, they competed with each other in EC motility, DRG collapse, and NRP1-binding assays, respectively, suggesting that the two ligands have overlapping NRP1 binding sites. Collapsin-1 rapidly disrupted the formation of lamellipodia and induced depolymerization of F-actin in an NRP1-dependent manner. In an in vitro angiogenesis assay, collapsin-1 inhibited the capillary sprouting of EC from rat aortic ring segments. These results suggest that collapsin-1 can inhibit EC motility as well as axon motility, that these inhibitory effects on motility are mediated by NRP1, and that VEGF165 and collapsin-1 compete for NRP1-binding sites.  相似文献   

15.
Although insulin-like growth factor 1 (IGF-1) has been associated with retinopathy, proof of a direct relationship has been lacking. Here we show that an IGF-1 receptor antagonist suppresses retinal neovascularization in vivo, and infer that interactions between IGF-1 and the IGF-1 receptor are necessary for induction of maximal neovascularization by vascular endothelial growth factor (VEGF). IGF-1 receptor regulation of VEGF action is mediated at least in part through control of VEGF activation of p44/42 mitogen-activated protein kinase, establishing a hierarchical relationship between IGF-1 and VEGF receptors. These findings establish an essential role for IGF-1 in angiogenesis and demonstrate a new target for control of retinopathy. They also explain why diabetic retinopathy initially increases with the onset of insulin treatment. IGF-1 levels, low in untreated diabetes, rise with insulin therapy, permitting VEGF-induced retinopathy.  相似文献   

16.
Vascular endothelial growth factor (VEGF) has two highly homologous tyrosine kinase receptors: Flt-1 (VEGFR-1) and KDR (VEGFR-2). KDR is strongly phosphorylated on tyrosines and can transmit mitogenic and motogenic signals following VEGF binding, while Flt-1 is markedly less effective in mediating such functions. To dissect the regions that account for the differences between the two receptors, we generated a series of chimeric Flt-1-KDR molecules. We found that the juxtamembrane region of Flt-1 prevents key signaling functions. When the juxtamembrane region of Flt-1 is replaced by that of KDR, Flt-1 becomes competent to mediate endothelial cell migration and phosphatidylinositol 3'-kinase activation in response to VEGF. Further mutational analysis shows that a short divergent sequence is responsible for such repressor function. However, mutant Flt-1 receptors lacking this sequence do not transmit effective proliferative signals, suggesting that this receptor function is regulated separately. These results define a novel functional domain that serves to repress Flt-1 activity in endothelial cells.  相似文献   

17.
18.
Estrogen induces a rapid increase in microvascular permeability in the rodent uterus, leading to stromal edema and a marked increase in uterine wet weight. This edema is believed to create an environment optimal for the growth and remodeling of the endometrium in preparation for implantation and pregnancy. Increased endometrial microvascular permeability also occurs in conjunction with implantation. Estrogen-induced uterine edema is immediately preceded by an increase in the expression of vascular endothelial growth factor (VEGF), a potent stimulator of microvascular permeability. The objective of this study was to determine to what degree immunoneutralization of VEGF would interfere with a) estradiol-induced uterine edema and b) pregnancy. In the first set of experiments, immature female rats were injected with either VEGF antiserum or normal rabbit serum (NRS) prior to 17beta-estradiol treatment. Rats treated with estradiol alone showed a 57% increase in uterine wet weight at 6 h compared with controls. Injection of 200 or 300 micro l of VEGF antiserum reduced the response to only 20% and 10% above controls, respectively. In the second set of experiments, young adult female mice were treated with 100 micro l of either VEGF antiserum or NRS at 1200 h on the fourth day after mating. NRS-treated mice had normal pregnancies. VEGF antiserum, however, completely blocked pregnancy. When VEGF antiserum-treated females were examined on Day 5 for the presence of implantation sites, none were found. These results show that a) VEGF is the major mediator of estrogen-induced increase in uterine vascular permeability and b) VEGF-induced edema is absolutely essential for implantation to take place.  相似文献   

19.
Neuroplin-1 (NRP1), a receptor for vascular endothelial growth factor (VEGF) family members, has three distinct extracellular domains, a1a2, b1b2, and c. To determine the VEGF(165) and placenta growth factor 2 (PlGF-2)-binding sites of NRP1, recombinant NRP1 domains were expressed in mammalian cells as Myc-tagged, soluble proteins, and used in co-precipitation experiments with 125I-VEGF165 and 125I-PlGF-2. Anti-Myc antibodies immunoprecipitated 125I-VEGF165 and 125I-PlGF-2 in the presence of the b1b2 but not of the a1a2 and c domains. Neither b1 nor b2 alone was capable of binding 125I-VEGF165. In competition experiments, VEGF165 competed PlGF-2 binding to the NRP1 b1b2 domain, suggesting that the binding sites of VEGF165 and PlGF-2 overlap. The presence of the a1a2 domain greatly enhanced VEGF165, but not PlGF-2 binding to b1b2. Heparin enhanced the binding of both 125I-VEGF165 and 125I-PlGF-2 to the b1b2 domain by 20- and 4-fold, respectively. A heparin chain of at least 20-24 monosaccharides was necessary for binding. In addition, the b1b2 domain of NRP1 could bind heparin directly, requiring heparin oligomers of at least 8 monosaccharide units. It was concluded that an intact b1b2 domain serves as the VEGF165-, PlGF-2-, and heparin-binding sites in NRP1, and that heparin is a critical component for regulating VEGF165 and PlGF-2 interactions with NRP1 by physically interacting with both receptor and ligands.  相似文献   

20.
Fibroblasts and smooth muscle cells release a protein activity which causes epithelial sheets to "scatter" into isolated cells. Purification of scatter factor (SF) activity from ras-transformed 3T3 cells was reported recently. We purified ras-3T3 SF by a slightly different method with essentially similar findings. Purified factor showed a single band at 77 +/- 3 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. Scatter activity was eluted from gel slices at this molecular size. Reduction with mercaptoethanol caused the loss of activity and the appearance of two bands (58 and 31 kDa). We report the amino acid composition of ras-3T3 SF and sequences of several tryptic peptides. These sequences were not similar to the known proteins in the Protein Database. We have shown previously that partially purified ras-3T3 scatter activity stimulates migration of epithelial and vascular endothelial cells in a new migration assay utilizing microcarrier beads. We now demonstrate that the same purified ras-3T3 protein scatters epithelial cells and stimulates epithelial and endothelial migration in microcarrier bead and Boyden chamber assays. Partially purified human smooth muscle scatter activity shares these activities, but the protein(s) responsible has not been isolated. Migration-stimulating activity was maximal at ras-3T3 protein concentrations less than 10 ng/ml (0.13 nM). ras-3T3 SF had no collagenolytic activity and did not stimulate DNA synthesis in fibroblast growth factor-responsive human melanocytes. ras-3T3 SF appears to be a new protein which regulates endothelial and epithelial mobility; and, therefore, it may be involved in vascular repair and wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号