首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive assay system for receptor activity of gangliosides to paramyxovirus was developed. This system involves incorporation of gangliosides into neuraminidase-treated chicken erythrocytes (asialoerythrocytes) followed by estimation of virus-mediated agglutination and hemolysis. The asialoerythrocytes coated with I-active ganglioside (Sia alpha 2-3Gal beta 1-4GlcNAc beta 1-3(Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-Cer) were effectively agglutinated by hemagglutinating virus of Japan (HVJ, Sendai virus). The hemolysis of the asialoerythrocytes mediated by HVJ was restored to the highest level by labeling the cells with gangliosides possessing lacto-series oligosaccharide chains, i.e., I-active ganglioside, N-acetylneuraminosylparagloboside (SiaPG(NeuAc)), and i-active ganglioside (Sia alpha 2-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-Cer). The specific receptor activity of ganglioside GD1a possessing a gangliotetraose chain was lower than those of the gangliosides described above. Gangliosides GM3, GD3, GM1a, GD1b, SiaPG(NeuGc) showed little effect on the restoration of HVJ-mediated hemolysis. On infection with Newcastle disease virus (NDV), the highest specific restoration of lysis was found in chicken asialoerythrocytes coated with SiaPG(NeuAc or NeuGc) and GM3(NeuAc or NeuGc), whereas those coated with I-active ganglioside, GD3, GM1a, and GD1b showed very low NDV-mediated hemolysis. The above results indicate that the determinants of receptor for HVJ contain sialylated branched and/or linear lacto-series oligosaccharides carried by I,i-active gangliosides and SiaPG(NeuAc) and sialosylgangliotetraose chain carried by GD1a. The determinants for NDV are carried by SiaPG(NeuAc or NeuGc) containing linear lacto-series oligosaccharide and GM3(NeuAc or NeuGc). The absence of detectable binding of free oligosaccharides obtained from I-active ganglioside and sialoglycoprotein GP-2 isolated from bovine erythrocyte membranes as HVJ receptor (Suzuki, Y., et al. J. Biochem. (1983) 93, 1621-1633; (1984) 95, 1193-1200) indicates that HVJ recognizes the sialooligosaccharides oriented out of the lipid bilayer in the cell membranes where the hydrophobic ceramide or peptide backbone of the receptor is integrated.  相似文献   

2.
Studies were done on the effect of bile salts on the rates of hydrolysis of the N-acetylneuraminyl linkages of several sialic acid-containing compounds by the neuraminidase of Clostridium perfringens. When GM3-ganglioside, two glycolipids (glycophorin and orosomucoid) and neuraminyl-lactose were used as substrates, hydrolysis was obtained even in the absence of bile salts, but addition of this detergent, below its critical micellar concentration, increased the reaction rates; above the critical micellar concentration of the detergent rates decreased again. When a second ganglioside, GM1, was used as substrate, the requirement for bile salts was absolute; hydrolysis was not observed at all without this detergent. With increasing concentrations of bile salt and in the presence of high concentrations of enzyme, rates of hydrolysis increased, reaching maximal values at fixed ratios of bile salt to GM1-ganglioside. Physical measurements showed that mixtures of bile salt and GM1-ganglioside form mixed micelles that have a higher critical micellar concentration, a lower molecular weight and greater axial ratio than the corresponding micelles of pure GM1-ganglioside.  相似文献   

3.
Investigation of the action of highly purified Clostridium perfringens sialidase on ganglioside II3Neu5Ac-Gg4Cer and its oligosaccharide II3Neu5Ac-Gg4, in the presence and absence of sodium cholate, extend earlier results obtained with impure enzyme fractions. Sialidase labeled with 125I was found to bind to various ganglioside substrate micelles, including II3Neu5Ac-Gg4Cer, and to mixed ganglioside-sodium cholate micelles. No binding occurred between the enzyme and the ganglioside-derived oligosaccharide II3Neu5Ac-Gg4, even when radioactive II3Neu5Ac-Gg4-[3H]ol was used. The binding of sialidase to micellar substrate is a condition for enzymic hydrolysis. Correspondingly, II3Neu5Ac-Gg4Cer and II3Neu5Ac-Gg4Cer-sodium cholate micelles were hydrolyzed by the enzyme but II3Neu5Ac-Gg4 was not. Ganglioside oligosaccharide analogues containing an amino function at the reducing terminus or between two oligosaccharide chains, II3Neu5Ac-Gg4-NH2 and (II3Neu5Ac-Gg4)2NH, were hydrolyzed in the absence of cholate. A synthetic analogue of II3Neu5Ac-Gg4Cer containing only the fatty acid moiety and not the sphingosine residue (I1-deoxy-I1-stearamido-II3-monosialo-gangliotetraitol ) behaved as the ganglioside in the presence and absence of sodium cholate.  相似文献   

4.
A new bacterial sialidase (N-acetylneuraminate glycohydrolase, EC 3.2.1.18) isolated from the culture filtrate of Arthrobacter ureafaciens was characterized in detail with respect to its action on sialoglycolipids. Strong electrolytes had a reversible inhibitory effect on the action of the enzyme on brain gangliosides in accordance with Debye-Hückel effect of ionic environment on ionic activity, and resulted in an acidic shift and a broadening of the pH optimum. Both ionic and non-ionic detergents markedly enhanced the enzymic activity on the gangliosides, and caused an acidic shift on the pH optimum of this enzyme. Sulfhydryl groups seemed to be involved in its active site. This enzyme had a highly specific action on sialidase-resistant ganglioside GM1, showing about 100-fold higher activity on GM1 than Clostridium perfringens sialidase, the only sialidase so far reported to cleave the lipid substrate in the presence of bile salts. In the absence of detergents, the activity of A. ureafaciens sialidase on GM1 was very low. Ganglioside GM1 in either the monomeric or micelar form was hydrolyzed to asialo-GM1 by A. ureafaciens sialidase most efficiently in the presence of sodium cholate of about three times the GM1 molar concentration. The presence of detergents increased both the Km and Vmax values for ganglioside GM1. The oligosaccharide prepared from GM1 by ozonolysis was cleaved well by this sialidase in the absence of detergents, and no detergent was found to affect the hydrolysis. The Km value for the sugar substrate was about two orders of magnitude greater than that for the corresponding lipid substrate. It is suggested that the hydrophobic ceramide moiety increases affinity of the lipid substrate to the enzyme, but inhibits hydrolysis of the substrate, possibly due to its hydrophobic interaction with hydrophobic portions of the enzyme molecule (resulting in lower Km and Vmax for lipid substrates). This inhibition may be released by detergent due to formation of mixed micelles of sialoglycolipid and detergent molecules. It is also indicated that recognition of the specific saccharide structure of GM1 by individual sialidases is essential for release of the resistant sialyl residue, and that A. ureafaciens sialidase seemed to have an isoenzymic or oligomeric structure.  相似文献   

5.
The kinetics of beta-D-N-acetylhexosaminidase against GM2 ganglioside were examined. We used a crude preparation of rat liver as the enzyme source because purification of beta-D-N-acetylhexosaminidase results in a decrease in specific activity against GM2 ganglioside. Kinetic plots were not linear but showed a break. At substrate concentrations less than 50 microM the Vmax was 6 pmol GM2 hydrolyzed per hour per micromole 4-MU-GlcNAc hydrolyzed per hour (pmol GM2/mumol 4-MU-GlcNAc) and the Km was 5 microM.At substrate concentrations greater than 50 microM, the Vmax was 7 pmol GM2/mumol 4-MU-GlcNAc and the Km was 14 microM. The critical micelle concentration of GM2 ganglioside was 20-25 microM as determined by spectral shifts of the dye pinacyanol chloride in association with GM2, and 10-15 microM from electrical conductivity measurements which also showed the end of the monomer-micelle transition to occur at 40-50 microM GM2. The increasing excess of micellar substrate at greater than 50 microM GM2 explains the discontinuity in the kinetic plots. Sodium taurocholate had a critical micelle concentration of 9-11 mM using pinacyanol chloride and 2.5-3 mM using electrical conductivity. When included in the assay mixture at a concentration of 10 mM, sodium taurocholate produced a linear kinetic plot. This is probably due to the formation of mixed micelles of detergent and GM2 ganglioside. The Vmax was 200 pmol GM2/MUmol 4-MU-GlcNAc and the Km was 93 microM. The data suggest that ganglioside hydrolysis occurs more readily when the substrate is incorporated into a membrane-like environment.  相似文献   

6.
Agglutinates of native chicken erythrocytes caused by influenza virus A/Aichi/2/68 (H3N2) at 4 degrees C were potently fused and lysed at low pH (optimum pH 5.3) at 37 degrees C. Exogenous gangliosides GM3 (Sia alpha 2-3Gal beta 1-4Glc beta 1-ceramide) and GM2 (GalNAc beta 1-4(Sia alpha 2-3)-Gal beta 1-4Glc beta 1-ceramide) were integrated into the membranes of chicken asialoerythrocytes within 5-min incubation at 37 degrees C. We found that the incorporation of ganglioside GM3 containing N-acetylneuraminic acid into asialoerythrocytes restored the biological responsiveness to the virus as established by agglutination at 4 degrees C and fusion and hemolysis at 37 degrees C at pH 5.3. Biological responsiveness of GM3-NeuAc-erythrocytes to the virus was considerably higher than that of GM3-NeuGc-erythrocytes under the same experimental conditions. Treatment of the GM3-NeuAc-erythrocytes with neuraminidase again resulted in the complete abolishment of the response to the virus. Erythrocytes containing GM2-NeuAc showed no detectable biological responses toward the virus. The above results indicate that the hemagglutinin of influenza virus A/Aichi/2/68 (H3N2) recognizes the sialyloligosaccharide chain of ganglioside GM3 as its receptor which mediates the adsorption and fusion process on the virus entry into the host cells and has more preferential specificity for binding to N-acetylneuraminic acid-containing GM3 than that to N-glycolyl type in the target cell membranes.  相似文献   

7.
The uptake and degradation of GM1 ganglioside (GM1) and asialoGM1 ganglioside (GA1) were studied in cultured fibroblasts from normal individuals and patients with beta-galactosidase deficiency, using the lipid-loading test. The glycolipids were incorporated from the media into the fibroblasts and the terminal galactose was hydrolyzed in normal cells. The hydrolysis rates of GA1 were 80-86% of normal on the 3rd day after loading, while GM1 was hydrolyzed slowly; 35-54% on the 14th day. In infantile GM1 gangliosidosis and I-cell disease, little GM1 and GA1 was hydrolyzed on any day of culture, while fibroblasts from patients with adult GM1 gangliosidosis, Morquio disease type B and galactosialidosis hydrolyzed the lipids at nearly normal rates. The intracellular accumulation of the glycolipids, on the basis of protein content, was abnormally high in the case of infantile GM1 gangliosidosis and I-cell disease, but normal in the other disorders examined. These observations indicate that the in situ metabolism of GM1 and GA1 is probably normal in fibroblasts from patients with adult GM1 gangliosidosis, Morquio disease type B and galactosialidosis, although in vitro beta-galactosidase activities in these disorders are very low. The results are compatible with findings that GM1 and GA1 do not accumulate in the somatic organs of patients with adult GM1 gangliosidosis and galactosialidosis. In I-cell disease, however, the results of the loading test did not agree with the finding that there is little accumulation of glycolipids in postmortem tissues.  相似文献   

8.
A highly sensitive method for quantification of sialic acids in gangliosides was developed. The sialic acids, released by hydrolysis of gangliosides, were converted to fluorescent derivatives with 1,2-diamino-4,5-(methylenedioxy)benzene (DMB) and separated on a reversed-phase C18 column with an isocratic elution. As little as 0.1-1.0 nmol of sialic acid in ganglioside was quantified. The use of acetate buffer instead of water in the mobile phase could prevent damage on the column and reduce background peaks derived from the reagents. When gangliosides were subjected to acid hydrolysis, the velocity of hydrolysis varied depending on their structures and a part of the sialic acid liberated decomposed with prolonged heating time. Therefore gangliosides were hydrolyzed by Arthrobacter ureafaciens neuraminidase in the presence of sodium cholate after addition of an internal standard. For the internal standard, GM3 with N-propionylneuraminic acid (GM3(NeuPr)) was synthesized from GM3(NeuAc) by N-deacylation followed by N-propionylation. Folch partition was used to decrease lipophilic materials included in the sample, and the sialic acids released were recovered from the upper phase. The present method has a satisfactory sensitivity in the simultaneous quantification of NeuAc and NeuGc in purified gangliosides as well as in crude lipid fractions containing a variety of gangliosides.  相似文献   

9.
A neuraminidase activity in myelin isolated from adult rat brains was examined. The enzyme activity in myelin was first compared with that in microsomes using N-acetylneuramin(alpha 2----3)lactitol (NL) as a substrate. In contrast to the microsomal neuraminidase which exhibited a sharp pH dependency for its activity, the myelin enzyme gave a very shallow pH activity curve over a range between 3.6 and 5.9. The myelin enzyme was more stable to heat denaturation (65 degrees C) than the microsomal enzyme. Inhibition studies with a competitive inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, showed the Ki value for the myelin neuraminidase to be about one-fifth of that for the microsomal enzyme (1.3 X 10(-6) M versus 6.3 X 10(-6) M). The apparent Km values for the myelin and the microsomal enzyme were 1.3 X 10(-4) M and 4.3 X 10(-4) M, respectively. An enzyme preparation that was practically devoid of myelin lipids was then prepared and its substrate specificity examined. The "delipidated enzyme" could hydrolyze fetuin, NL, and ganglioside substrates, including GM1 and GM2. When the delipidated enzyme was exposed to high temperature (55 degrees C) or low pH (pH 2.54), the neuraminidase activities toward NL and GM3 decreased at nearly the same rate. Both fetuin and 2,3-dehydro-2-deoxy-N-acetylneuraminic acid inhibited NL and GM3 hydrolysis. With 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, inhibition of NL was greater than that of GM3; however, the Ki values for each substrate were almost identical. GM3 and GM1 also competitively inhibited the hydrolysis of NL and NL similarly inhibited GM3 hydrolysis by the enzyme. These results indicate that rat brain myelin has intrinsic neuraminidase activities toward nonganglioside as well as ganglioside substrates, and that these two enzyme activities are likely catalyzed by a single enzyme entity.  相似文献   

10.
Rotavirus is the most common cause of severe gastroenteritis in infants and children worldwide. The cell attachment of most animal rotaviruses, which belong to the neuraminidase-sensitive strains, requires sialic acid residues on the host cell membranes. On the other hand, most human rotaviruses are classified as neuraminidase-insensitive strains. The involvement of gangliosides on the host cell surface in human rotavirus infection was investigated by immunostaining analysis of target cells, and by assaying the neutralization of infection by rotavirus and the blocking of target cellular receptors. In host cells (MA104 cells) pretreated with Arthrobacter ureafaciens neuraminidase, which were still infected by human rotaviruses (KUN and MO strains), GM(3) was hydrolyzed markedly by the neuraminidase, while GM(1a) was not hydrolyzed at all. Infection by the rotaviruses was strongly inhibited by exogenous ganglioside GM(1a), but not GA(1). Infection was also inhibited by pretreatment of the MA104 cells with cholera toxin B-subunit, which specifically blocked ganglioside GM(1a) on the plasma membrane. The treatment of MA104 cells with the endoglycoceramidase attenuated human rotavirus infection. From these findings, we concluded that GM(1a) on the plasma membrane of the host cells was involved in the infection by human rotavirus KUN and MO strains.  相似文献   

11.
The heat stable protein activator of GM1 ganglioside hydrolysis was isolated from the liver of a patient with GM1 gangliosidosis, Type 1. It was found to be present at a level about 35 times that found in a liver sample from an age matched control. This activator protein was demonstrated to stimulate the hydrolysis of GM1 ganglioside and GA1 (asialo-GM1 ganglioside) in the presence of purified GM1 ganglioside β-galactosidase without the need for bile salt detergents. It could not stimulate the hydrolysis of two other galactosphingolipids, galactosylceramide and lactosylceramide, in the presence of the same enzyme. Lactosylceramide was a good substrate for this enzyme when sodium glycodeoxycholate was included in the assay. This activator protein had two isoelectric points pH 4.1 and 4.6, and it had an apparent molecular weight of 27,000 by gel filtration.  相似文献   

12.
Two genetically distinct acid beta-galactosidases are apparently involved in the hydrolysis of galactosylceramide in fibroblasts. These beta-galactosidases were activated by different bile salts. The classical galactosylceramidase (galactosylceramidase I, EC 3.2.1.46) was activated by sodium taurocholate, while the other galactosylceramidase (galactosylceramidase II) was activated by sodium cholate. The former was genetically lacking in globoid cell leukodystrophy (GLD) and the latter in GM1 gangliosidosis. Galactosylceramidase II cross-reacted with antibody raised against purified GM1 ganglioside beta-galactosidase (EC 3.2.1.23) from the human placenta. The purified beta-galactosidase had galactosylceramidase II activity, which was competitively inhibited by GM1 ganglioside. Thus, galactosylceramidase II seems to be identical to GM1 ganglioside beta-galactosidase and lactosylceramidase II. Galactosylceramidase II had a very low affinity for galactosylsphingosine. In the galactosylceramide-loading tests using fibroblasts from patients with GLD and GM1 gangliosidosis, both cell lines hydrolyzed the incorporated galactosylceramide, with lower rates than control fibroblasts but higher than the fibroblasts from patients with I-cell disease, in which both galactosylceramidase I and II were deficient. These results indicate that galactosylceramide is hydrolyzed by two genetically distinct beta-galactosidases and explain well that galactosylsphingosine but not galactosylceramide accumulates in the brain of patients with GLD.  相似文献   

13.
The four major isoelectric forms of human liver neuraminidase (with pI values between 3.4 and 4.8) have been isolated by preparative isoelectric focusing and characterized with regard to their substrate specificity using glycoprotein, glycopeptide, oligosaccharide and ganglioside natural substrates. All forms exhibited a rather broad linkage specificity and were capable of hydrolyzing sialic acid glycosidically linked alpha 2-3, alpha 2-6 and alpha 2-8, although differential rates of hydrolysis of the substrates were found for each form. The most acidic form 1 (pI 3.4) was most active on sialyl-lactose, whereas form 2 (pI 3.9) and 3 (pI 4.4) were most active on the more hydrophobic ganglioside substrates. Form 4 (pI 4.8) was most active on the low-Mr hydrophilic substrates (fetuin glycopeptide, sialyl-lactose). Each form was less active on the glycoprotein fetuin than on a glycopeptide derived from fetuin. Organelle-enriched fractions were prepared from fresh human liver tissue and neuraminidase activity on 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid was recovered in plasma membrane, microsomal, lysosomal and cytosolic preparations. Isoelectric focusing of the neuraminidase activity recovered in each of these preparations resulted in significantly different isoelectric profiles (number, relative amounts and pI values of forms) for each preparation. The differential substrate specificity of the isoelectric forms and the different isoelectric focusing profiles of neuraminidase activity recovered in subcellular-enriched fractions suggest that specific isoelectric forms with broad but defined substrate specificity are enriched at separate sites within the cell.  相似文献   

14.
According to our hypothesis (Fürst, W., and Sandhoff, K. (1992) Biochim. Biophys. Acta 1126, 1-16) glycosphingolipids of the plasma membrane are digested after endocytosis as components of intraendosomal and intralysosomal vesicles and membrane structures. The lysosomal degradation of glycosphingolipids with short oligosaccharide chains by acid exohydrolases requires small, non-enzymatic cofactors, called sphingolipid activator proteins (SAPs). A total of five activator proteins have been identified as follows: namely the saposins SAP-A, -B, -C, and -D, which are derived from the single chain SAP-precursor protein (prosaposin), and the GM2 activator protein. A deficiency of prosaposin results in the storage of ceramide and sphingolipids with short oligosaccharide head groups. The loss of the GM2 activator protein blocks the degradation of the ganglioside GM2. The enzymatic hydrolysis of the ganglioside GM1 is catalyzed by beta-galactosidase, a water-soluble acid exohydrolase. The lack of ganglioside GM1 accumulation in patients suffering from either prosaposin or GM2 activator protein deficiency has led to the hypothesis that SAPs are not needed for the hydrolysis of the ganglioside GM1 in vivo. In this study we demonstrate that an activator protein is required for the enzymatic degradation of membrane-bound ganglioside GM1 and that both SAP-B and the GM2 activator protein significantly enhance the degradation of the ganglioside GM1 by acid beta-galactosidase in a liposomal, detergent-free assay system. These findings offer a possible explanation for the observation that no storage of the ganglioside GM1 has been observed in patients with either isolated prosaposin or isolated GM2 activator deficiency. We also demonstrate that anionic phospholipids such as bis(monoacylglycero)phosphate and phosphatidylinositol, which specifically occur in inner membranes of endosomes and in lysosomes, are essential for the activator-stimulated hydrolysis of the ganglioside GM1. Assays utilizing surface plasmon resonance spectroscopy showed that bis(monoacylglycero)phosphate increases the binding of both beta-galactosidase and activator proteins to substrate-carrying membranes.  相似文献   

15.
The action of Clostridium perfringens neuraminidase on the ganglioside Gm1 tritiated in the ceramide moiety was studied. The rates of hydrolysis of the Gm1 ganglioside were determined from radioactivity in the neutral glycolipid product, which was separated from the substrate on DEAE-Sephadex columns. In order to study the physical state of the substrate in the conditions used in the neuraminidase treatment, the critical micelle concentrations of the Gm1 ganglioside were determined using formation of the triiodide anion in aqueous iodine solution as an indicator. The critical micelle concentrations were also obtained by determining the non-sedimenting radioactivity at different concentrations of the labeled ganglioside per total volume used in ultracentrifugation experiments. In addition, the concentrations of the monomeric ganglioside were concluded from the results of the ultra-centrifugation studies. The increase in the reaction rate of the Gm1 hydrolysis as the function of the substrate concentration was leveled off at 25-28 microM ganglioside. The abrupt change at this concentration is interpreted as reflecting the monomer-micelle transition of the ganglioside in the conditions used (50mM sodium acetate buffer, pH 4.6). The critical micelle concentration was 29 microM on the basis of the triiodide test, and ultracentrifugation revealed the critical micelle concentration 28 microM. The reaction velocity of the hydrolysis was decreased immediately above the critical micelle concentration, and became constant at higher concentrations of the ganglioside. A close correlation to these changes in the reaction rate is suggested to exist in the concentrations of the monomeric Gm1 ganglioside. Saturation of the buffer used in the neuraminidase assays with butanol effected a striking change in the plot of reaction rate versus ganglioside concentration. The reaction rate increased up to 100-110 microM Gm1 ganglioside. The shift of the inflexion point in the rate plot from 25-28 microM to 100-110 microM ganglioside concentration is suggested to be due to a respective change in the critical micelle concentration effected by butanol. N-Acetylneuraminyllactosyl ceramide, lactosyl ceramide and asialo-Gm1 ganglioside had an inhibitory effect on the reaction. In contrast, N-acetylneuraminyllactose, lactose and some other free saccharides were not inhibitory. The results demonstrate that factors other than the saccharide structure must be taken into account when substrate specificity of a glycosidase is studied using competition experiments. It is suggested that the inhibition effected by the glycolipids is due to an increase in the micellar state of the Gm1 ganglioside.  相似文献   

16.
Huang IC  Li W  Sui J  Marasco W  Choe H  Farzan M 《Journal of virology》2008,82(10):4834-4843
Enveloped viruses use multiple mechanisms to inhibit infection of a target cell by more than one virion. These mechanisms may be of particular importance for the evolution of segmented viruses, because superinfection exclusion may limit the frequency of reassortment of viral genes. Here, we show that cellular expression of influenza A virus neuraminidase (NA), but not hemagglutinin (HA) or the M2 proton pump, inhibits entry of HA-pseudotyped retroviruses. Cells infected with H1N1 or H3N2 influenza A virus were similarly refractory to HA-mediated infection and to superinfection with a second influenza A virus. Both HA-mediated entry and viral superinfection were rescued by the neuraminidase inhibitors oseltamivir carboxylate and zanamivir. These inhibitors also prevented the removal of alpha-2,3- and alpha-2,6-linked sialic acid observed in cells expressing NA or infected with influenza A viruses. Our data indicate that NA alone among viral proteins limits influenza A virus superinfection.  相似文献   

17.
The interaction of enveloped viruses with cell surface receptors is the first step in the viral cycle and an important determinant of viral host range. Although it is established that the paramyxovirus Newcastle Disease Virus binds to sialic acid-containing glycoconjugates the exact nature of the receptors has not yet been determined. Accordingly, here we attempted to characterize the cellular receptors for Newcastle disease virus. Treatment of cells with tunicamycin, an inhibitor of protein N-glycosylation, blocked fusion and infectivity, while the inhibitor of O-glycosylation benzyl-N-acetyl-alpha-D-galactosamide had no effect. Additionally, the inhibitor of glycolipid biosynthesis 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol blocked viral fusion and infectivity. These results suggest that N-linked glycoproteins and glycolipids would be involved in viral entry but not O-linked glycoproteins. The ganglioside content of COS-7 cells was analyzed showing that GD1a was the major ganglioside component; the presence of GM1, GM2 and GM3 was also established. In a thin-layer chromatographic binding assay, we analyzed the binding of the virus to different gangliosides, detecting the interaction with monosialogangliosides such as GM3, GM2 and GM1; disialogangliosides such as GD1a and GD1b, and trisialogangliosides such as GT1b. Unlike with other viruses, our results seem to point to the absence of a specific pattern of gangliosides that interact with Newcastle disease virus. In conclusion, our results suggest that Newcastle disease virus requires different sialic acid-containing compounds, gangliosides and glycoproteins for entry into the target cell. We propose that gangliosides would act as primary receptors while N-linked glycoproteins would function as the second receptor critical for viral entry.  相似文献   

18.
Specific gangliosides GD1a, GT1b and GQ1b isolated from brain have been shown to function as receptors for Sendai virus by conferring susceptibility to infection when they are incorporated into receptor-deficient cells (Markwell, M.A.K., Svennerholm, L. and Paulson, J.C. (1981) Proc. Natl. Acad. Sci. USA 78, 5406-5410). The endogenous gangliosides of three commonly used hosts for Sendai virus: MDBK, HeLa, and MDCK cells were analyzed to determine the amount and type of receptor gangliosides present. In all three cell lines, GM3 was the major ganglioside component. The presence of GM1, GD1a and the more complex homologs of the gangliotetraose series was also established. In cell lines derived from normal tissue, MDBK and MDCK cells, gangliosides contributed 47-65% of the total sialic acid. In HeLa cells, gangliosides contributed substantially less (17% of the total sialic acid). The ganglioside content of each cell line was shown not to be immutable but instead to depend on the state of differentiation, passage number, and surface the cells were grown on. Thus, the ganglioside concentration of undifferentiated MDCK cells was found to be substantially greater than that of MDBK or HeLa cells, but decreased as the MDCK cells underwent differentiation. Changes in culture conditions that were shown to decrease the receptor ganglioside content of the cells resulted in a corresponding decrease in susceptibility to infection. The endogenous oligosialogangliosides present in susceptible host cells were shown to function as receptors for Sendai virus.  相似文献   

19.
Neuraminidases from different subtypes of influenza virus are characterized by the absence of serological cross-reactivity and an amino acid sequence homology of approximately 50%. The three-dimensional structure of the neuraminidase antigen of subtype N9 from an avian influenza virus (A/tern/Australia/G70c/75) has been determined by X-ray crystallography and shown to be folded similarly to neuraminidase of subtype N2 isolated from a human influenza virus. This result demonstrates that absence of immunological cross-reactivity is no measure of dissimilarity of polypeptide chain folding. Small differences in the way in which the subunits are organized around the molecular fourfold axis are observed. Insertions and deletions with respect to subtype N2 neuraminidase occur in four regions, only one of which is located within the major antigenic determinants around the enzyme active site.  相似文献   

20.
The anomeric specificity of six sialidases (Vibrio cholerae, Arthrobacter ureafaciens, Clostridium perfringens, Newcastle disease virus, fowl plague virus and influenza A2 virus sialidases) was assessed with sialylated antifreeze glycoprotein, ovine submandibular gland glycoprotein and alpha 1-acid glycoprotein, resialylated specifically in alpha(2-3) or alpha(2-6) linkage with N-acetylneuraminic acid or N-glycolylneuraminic acid using highly purified sialyltransferases. The rate of release of sialic acid from these substrates was found to correlate well with the specificity observed earlier with the same sialidases using small oligosaccharide substrates, i.e., alpha(2-3) glycosidic linkages are hydrolyzed faster than alpha(2-6) linkages, with the exception of the enzyme from A. ureafaciens. Sialidase activity was higher with N-acetylneuraminic acid when compared with N-glycolylneuraminic acid. The studies also showed that the core oligosaccharide and protein structure in glycoproteins may influence the rate of release for different glycosidic linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号