首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel uncoupling proteins (UCP2-5) are implicated in the mitochondrial control of oxidant production, insulin signaling, and aging. Attempts to understand their functions have been complicated by overlapping expression patterns in most organisms. Caenorhabditis elegans nematodes are unique because they express only one UCP ortholog, ceUCP4 (ucp4). Here, we performed detailed metabolic analyzes in genetically modified nematodes to define the function of the ceUCP4. The knock-out mutant ucp4 (ok195) exhibited sharply decreased mitochondrial succinate-driven (complex II) respiration. However, respiratory coupling and electron transport chain function were normal in ucp4 mitochondria. Surprisingly, isolated ucp4 mitochondria showed markedly decreased succinate uptake. Similarly, ceUCP4 inhibition blocked succinate respiration and import in wild type mitochondria. Genetic and pharmacologic inhibition of complex I function was selectively lethal to ucp4 worms, arguing that ceUCP4-regulated succinate transport is required for optimal complex II function in vivo. Additionally, ceUCP4 deficiency prolonged lifespan in the short-lived mev1 mutant that exhibits complex II-generated oxidant production. These results identify a novel function for ceUCP4 in the regulation of complex II-based metabolism through an unexpected mechanism involving succinate transport.  相似文献   

2.
Crystal violet exhibited characteristics of an uncoupler of oxidative phosphorylation, i.e. it released respiratory control, hindered ATP synthesis, enhanced ATPase activity, and produced swelling of isolated rat liver mitochondria. Maximal stimulation of respiration, ATPase activity, and swelling was observed at a concentration of 40 microM. The inhibition of State 3 respiration by oligomycin was released by crystal violet. High concentrations of crystal violet inhibited mitochondrial respiration. The uncoupling effect of crystal violet required inorganic phosphate and was abolished by N-ethylmaleimide. The adenine nucleotides ADP and ATP protected mitochondria from uncoupling by the dye. The dye taken up by mitochondria was released into the incubation medium on induction of uncoupling. In the absence of phosphate, the dye did not cause uncoupling, but its retention was much greater than in the presence of phosphate. Crystal violet is suggested to induce uncoupling by acting on the membrane, rather than by its electrophoretic transfer into the mitochondria.  相似文献   

3.
Carbon monoxide is continuously produced in small quantities in tissues and is an important signaling mediator in mammalian cells. We previously demonstrated that CO delivered to isolated rat heart mitochondria using a water-soluble CO-releasing molecule (CORM-3) is able to uncouple mitochondrial respiration. The aim of this study was to explore more in depth the mechanism(s) of this uncoupling effect. We found that acceleration of mitochondrial O2 consumption and decrease in membrane potential induced by CORM-3 were associated with an increase in mitochondrial swelling. This effect was independent of the opening of the mitochondrial transition pore as cyclosporine A was unable to prevent it. Interestingly, removal of phosphate from the incubation medium suppressed the effects mediated by CORM-3. Blockade of the dicarboxylate carrier, which exchanges dicarboxylate for phosphate, decreased the effects induced by CORM-3 while direct inhibition of the phosphate carrier with N-ethylmaleimide completely abolished the effects of CORM-3. In addition, CORM-3 was able to enhance the transport of phosphate into mitochondria as evidenced by changes in mitochondrial phosphate concentration and mitochondrial swelling that evaluates the activity of the phosphate carrier in de-energized conditions. These results indicate that CORM-3 activates the phosphate carrier leading to an increase in phosphate and proton transport inside mitochondria, both of which could contribute to the non-classical uncoupling effect mediated by CORM-3. The dicarboxylate carrier amplifies this effect by increasing intra-mitochondrial phosphate concentration.  相似文献   

4.
Peter Schönfeld  Lech Wojtczak 《BBA》2007,1767(8):1032-1040
Long-chain nonesterified (“free”) fatty acids (FFA) can affect the mitochondrial generation of reactive oxygen species (ROS) in two ways: (i) by depolarisation of the inner membrane due to the uncoupling effect and (ii) by partly blocking the respiratory chain. In the present work this dual effect was investigated in rat heart and liver mitochondria under conditions of forward and reverse electron transport. Under conditions of the forward electron transport, i.e. with pyruvate plus malate and with succinate (plus rotenone) as respiratory substrates, polyunsaturated fatty acid, arachidonic, and branched-chain saturated fatty acid, phytanic, increased ROS production in parallel with a partial inhibition of the electron transport in the respiratory chain, most likely at the level of complexes I and III. A linear correlation between stimulation of ROS production and inhibition of complex III was found for rat heart mitochondria. This effect on ROS production was further increased in glutathione-depleted mitochondria. Under conditions of the reverse electron transport, i.e. with succinate (without rotenone), unsaturated fatty acids, arachidonic and oleic, straight-chain saturated palmitic acid and branched-chain saturated phytanic acid strongly inhibited ROS production. This inhibition was partly abolished by the blocker of ATP/ADP transfer, carboxyatractyloside, thus indicating that this effect was related to uncoupling (protonophoric) action of fatty acids. It is concluded that in isolated rat heart and liver mitochondria functioning in the forward electron transport mode, unsaturated fatty acids and phytanic acid increase ROS generation by partly inhibiting the electron transport and, most likely, by changing membrane fluidity. Only under conditions of reverse electron transport, fatty acids decrease ROS generation due to their uncoupling action.  相似文献   

5.
Though extracts of Ginkgo biloba leaves (GBE) have a wide pharmacological application, little is known about GBE effects on mitochondria. In this work, effects of ethanolic GBE on the respiration of isolated rat heart and liver mitochondria were investigated. We found that GBE stimulates the pyruvate + malate-dependent State 2 respiration of heart mitochondria and decreases mitochondrial membrane potential. Uncoupling effect of GBE was found to be due to its protonophoric action and is likely to be mediated by the ATP/ADP-translocator and uncoupling proteins. The effect of GBE was less in liver than in heart mitochondria. State 3 respiration of heart mitochondria was slightly stimulated at low and depressed at higher GBE concentrations. Inhibition of State 3 respiration of heart mitochondria was not relieved by uncoupler indicating that GBE may inhibit the respiratory chain complexes or the substrate transport. However, Complex IV of the respiratory chain was not inhibited by GBE. H2O2 generation was attenuated by low concentration of GBE probably due to mild uncoupling. The data suggest that mild but not severe uncoupling activity of GBE may be important in providing pharmacological protection of cellular functions in pathological situations.  相似文献   

6.
Carbon monoxide (CO), produced during the degradation of heme by the enzyme heme oxygenase, is an important signaling mediator in mammalian cells. Here we show that precise delivery of CO to isolated heart mitochondria using a water-soluble CO-releasing molecule (CORM-3) uncouples respiration. Addition of low-micromolar concentrations of CORM-3 (1–20 μM), but not an inactive compound that does not release CO, significantly increased mitochondrial oxygen consumption rate (State 2 respiration) in a concentration-dependent manner. In contrast, higher concentrations of CORM-3 (100 μM) suppressed ADP-dependent respiration through inhibition of cytochrome c oxidase. The uncoupling effect mediated by CORM-3 was inhibited in the presence of the CO scavenger myoglobin. Moreover, this effect was associated with a gradual decrease in membrane potential (ψ) over time and was partially reversed by malonate, an inhibitor of complex II activity. Similarly, inhibition of uncoupling proteins or blockade of adenine nucleotide transporter attenuated the effect of CORM-3 on both State 2 respiration and Δψ. Hydrogen peroxide (H2O2) produced by mitochondria respiring from complex I-linked substrates (pyruvate/malate) was increased by CORM-3. However, respiration initiated via complex II using succinate resulted in a fivefold increase in H2O2 production and this effect was significantly inhibited by CORM-3. These findings disclose a counterintuitive action of CORM-3 suggesting that CO at low levels acts as an important regulator of mitochondrial respiration.  相似文献   

7.
Phytanic acid (Phyt) increase is associated with the hereditary neurodegenerative Refsum disease. To elucidate the still unclear toxicity of Phyt, mitochondria from brain and heart of adult rats were exposed to free Phyt. Phyt at low micromolar concentrations (maximally: 100 nmol/mg of protein) enhances superoxide (O(2)(.))(2) generation. Phyt induces O(2)(.) in state 3 (phosphorylating), as well as in state 4 (resting). Phyt stimulates O(2)(.) generation when the respiratory chain is fed with electrons derived from oxidation of glutamate/malate, pyruvate/malate, or succinate in the presence of rotenone. With succinate alone, Phyt suppresses O(2)(.) generation caused by reverse electron transport from succinate to complex I. The enhanced O(2)(.) generation by Phyt in state 4 is in contrast to the mild uncoupling concept. In this concept uncoupling by nonesterified fatty acids should abolish O(2)(.) generation. Stimulation of O(2)(.) generation by Phyt is paralleled by inhibition of the electron transport within the respiratory chain or electron leakage from the respiratory chain. The interference of Phyt with the electron transport was demonstrated by inhibition of state 3- and p-trifluoromethoxyphenylhydrazone (FCCP)-dependent respiration, inactivation of the NADH-ubiquinone oxidoreductase complex in permeabilized mitochondria, decrease in reduction of the synthetic electron acceptor 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide in state 4, and increase of the mitochondrial NAD(P)H level in FCCP-uncoupled mitochondria. Thus, we suggest that complex I is the main site of Phyt-stimulated O(2)(.) generation. Furthermore, inactivation of aconitase and oxidation of the mitochondrial glutathione pool show that enhanced O(2)(.) generation with chronic exposure to Phyt causes oxidative damage.  相似文献   

8.
A study has been carried out on the interaction of arachidonic acid and other long chain free fatty acids with bovine heart mitochondria. It is shown that arachidonic acid causes an uncoupling effect under state 4 respiration of intact mitochondria as well as a marked inhibition of uncoupled respiration. While, under our conditions, the uncoupling effect is independent of the fatty acid species considered, the inhibition is stronger for unsaturated acids. Experiments carried out with mitochondrial particles indicated that the arachidonic acid dependent decrease of the respiratory activity is caused by a selective inhibition of Complex I and III. It is also shown that arachidonic acid causes a remarkable increase of hydrogen peroxide production when added to mitochondria respiring with either pyruvate+malate or succinate as substrate. The production of reactive oxygen species (ROS) at the coupling site II was almost double than that at site I. The results obtained are discussed with regard to the impairment of the mitochondrial respiratory activity as occurring during the heart ischemia/reperfusion process.  相似文献   

9.
Effects of cyanide-resistant alternative oxidase (AOX) and modulators of plant uncoupling mitochondrial proteins (PUMP) on respiration rate and generation of transmembrane electric potential (ΔΨ) were investigated during oxidation of various substrates by isolated mitochondria from etiolated coleoptiles of winter wheat (Triticum aestivum L.). Oxidative phosphorylation in wheat mitochondria during malate and succinate oxidation was quite effective (it was characterized by high respiratory control ratio as defined by Chance, high ADP/O ratio, and rapid ATP synthesis). Nevertheless, the effectiveness of oxidative phosphorylation was substantially modulated by operation of energy-dissipating systems. The application of safranin dye revealed the partial dissipation of ΔΨ during inhibition of cytochrome-mediated malate oxidation by cyanide and antimycin A and demonstrated the operation of AOX-dependent compensatory mechanism for ΔΨ generation. The complex I of mitochondrial electron transport chain was shown to play the dominant role in ΔΨ generation and ATP synthesis during AOX functioning upon inhibition of electron transport through the cytochrome pathway. Effects of linoleic acid (PUMP activator) at physiologically low concentrations (4–10 μM) on respiration and ΔΨ generation in mitochondria were examined. The uncoupling effect of linoleic acid was shown in activation of the State 4 respiration, as well as in ΔΨ dissipation; this effect was eliminated in the presence of BSA but was insensitive to purine nucleotides. The uncoupling effect of linoleic acid was accompanied by reversible inhibition of AOX activity. The results are discussed with regard to possible physiological role of mitochondrial energy-dissipating systems in regulation of energy transduction in plant cells under stress conditions.  相似文献   

10.
Pham HN  Gregory P 《Plant physiology》1980,65(6):1173-1175
Helminthosporium maydis Race T toxin caused the expected changes in freshly isolated mitochondria from T cytoplasm corn, namely complete uncoupling of oxidative phosphorylation, pronounced stimulation of succinate and NADH respiration, complete inhibition of malate respiration, and increased mitochondrial swelling. In contrast, identical toxin treatments of the mitochondria after 12 hours aging on ice resulted in partial uncoupling, much lower stimulation of succinate and NADH respiration, no inhibition of malate respiration, and no mitochondrial swelling. Almost all of the toxin sensitivity was lost by 6 hours aging. At this stage, the mitochondria were 208× and 66× less sensitive to toxin-induced changes in coupling of malate respiration and state 4 malate respiration rates, respectively. Loss of toxin sensitivity did not occur when the mitochondria were aged under nitrogen or in the presence of 5 millimolar dithiothreitol. This suggested that the aging effect was due to oxidation, possibly of sulfhydryl groups in one or more mitochondrial membrane proteins.  相似文献   

11.
1. The rates of oxidation of various substrates (beta-hydroxybutyrate, succinate, ascorbate + TMPD) and the rate of ATP synthesis in liver mitochondria from active and hibernating ground squirrels were measured. 2. It was shown that the rate of mitochondrial respiration is significantly lower in hibernating animals than in active animals. 3. The degree of inhibition of mitochondrial respiration in hibernating ground squirrels was found to correlate with the length of the respiratory chain fragment involved in the oxidation of a given substrate. 4. The inhibition of mitochondrial respiration in hibernating animals was accompanied by a decrease in the rate of ATP synthesis. 5. The activity of phospholipase A2 in liver mitochondria from hibernating ground squirrels was found to be decreased. The activation of phospholipase A2 by Ca2+ ions eliminated the inhibition of respiration almost completely. 6. It was assumed that the inhibition of mitochondrial respiration during hibernation is (a) related to the suppression of phospholipase A2 activity and (b) caused by the reduced rates of electron transport through the respiratory chain and/or of substrate transport across the mitochondrial membrane.  相似文献   

12.
In a phosphate medium at pH 6.6 low concentrations of uncouplers such as p-trifluoromethoxyphenylhydrazone carbonylcyanide and 2,4-dinitrophenol inhibit the oxidation of beta-hydroxybutyrate and succinate, when added during Ca++-accumulation. The inhibition depends on the amount of accumulated Ca++, and is released by N,N,N',N'-tetramethyl-p-phenylendiamine plus ascorbate as substrate. Under identical conditions the uncouplers have no inhibitory effect when added to mitochondria during state 3 respiration or during accumulation of Sr++. Inhibition of respiration by the decrease of transmembranal succinate transport or by accumulation of oxaloacetate can be excluded. It is suggested that accumulation of Ca++ in the presence of phosphate induces structural alteration of the mitochondrial membrane, which on the one hand changes the accessibility or sensitivity of dehydrogenases to uncouplers and causes leakage of accumulated Ca++ on the other.  相似文献   

13.
Ischemic preconditioning, or the protective effect of short ischemic episodes on a longer, potentially injurious, ischemic period, is prevented by antagonists of mitochondrial ATP-sensitive K+ channels (mitoKATP) and involves changes in mitochondrial energy metabolism and reactive oxygen release after ischemia. However, the effects of ischemic preconditioning itself on mitochondria are still poorly understood. We determined the effects of ischemic preconditioning on isolated heart mitochondria and found that two brief (5 min) ischemic episodes are sufficient to induce a small but significant decrease ( approximately 25%) in mitochondrial NADH-supported respiration. Preconditioning also increased mitochondrial H2O2 release, an effect related to respiratory inhibition, because it is not observed in the presence of succinate plus rotenone and can be mimicked by chemically inhibiting complex I in the presence of NADH-linked substrates. In addition, preconditioned mitochondria presented more substantial ATP-sensitive K+ transport, indicative of higher mitoKATP activity. Thus we directly demonstrate that preconditioning leads to mitochondrial respiratory inhibition in the presence of NADH-linked substrates, increased reactive oxygen release, and activation of mitoKATP.  相似文献   

14.
Mitochondria of the amoeba Acanthamoeba castellanii possess a free fatty acid-activated uncoupling protein (AcUCP) that mediates proton re-uptake driven by the mitochondrial proton electrochemical gradient. We show that AcUCP activity diverts energy from ATP synthesis during state 3 mitochondrial respiration in a fatty acid-dependent way. The efficiency of AcUCP in mitochondrial uncoupling increases when the state 3 respiratory rate decreases as the AcUCP contribution is constant at a given linoleic acid concentration while the ATP synthase contribution decreases with respiratory rate. Respiration sustained by this energy-dissipating process remains constant at a given linoleic acid concentration until more than 60% inhibition of state 3 respiration by n-butyl malonate is achieved. The present study supports the validity of the ADP/O method to determine the actual contributions of AcUCP (activated with various linoleic acid concentrations) and ATP synthase in state 3 respiration of A.castellanii mitochondria fully depleted of free fatty acid-activated and describes how the two contributions vary when the rate of succinate dehydrogenase is decreased by succinate uptake limitation.  相似文献   

15.
1. The organic mercurial sodium mersalyl, formaldehyde, dicyclohexylcarbodiimide and tributyltin each blocked respiratory-chain-linked ATP synthesis in rat liver mitochondria. 2. Mersalyl and formaldehyde also blocked a number of other processes dependent on the entry of inorganic phosphate into mitochondria, including mitochondrial respiration and swelling stimulated by cations and phosphate, the substrate-level phosphorylation reaction of the citric acid cycle, and swelling in ammonium phosphate. 3. Dicyclohexylcarbodi-imide and tributyltin did not inhibit the entry of phosphate into mitochondria. 4. Mersalyl and formaldehyde had a relatively slight effect on succinate oxidation and swelling stimulated by cations when phosphate was replaced by acetate, on succinate oxidation stimulated by uncoupling agents, and on swelling in solutions of ammonium salts other than phosphate or arsenate. 5. Formaldehyde blocked the oxidation of NAD-linked substrates in mitochondria treated with 2,4-dinitrophenol and the ATP-dependent reduction of NAD by succinate catalysed by ox heart submitochondrial particles. Both these effects appear to be due to an inhibition by formaldehyde of the NAD-flavin region of the respiratory chain. 6. Concentrations of dicyclohexylcarbodiimide or tributyltin sufficient to abolish ADP-stimulated respiration blocked the dinitrophenol-stimulated adenosine triphosphatase activity, whereas mersalyl and formaldehyde caused only partial inhibition of ATP hydrolysis. 7. When mitochondria were incubated with dinitrophenol and ATP, less than 10% of the total inorganic phosphate liberated was recovered in the mitochondria and no swelling occurred. In the presence of mersalyl or formaldehyde at least 80% of the total inorganic phosphate liberated was retained in the mitochondria and extensive swelling was observed. This swelling was inhibited by oligomycin but not by antimycin or rotenone. 8. The addition of mersalyl to mitochondria swollen by treatment with valinomycin, K(+) and phosphate blocked the contraction induced by dinitrophenol and caused an increase in the phosphate content of the mitochondria, but had no effect on the contraction of mitochondria when phosphate was replaced by acetate. 9. It is concluded that mitochondria contain a phosphate-transporter system, which catalyses the movement of phosphate in either direction across the mitochondrial membrane, and that this system is inactivated by organic mercurials and by formaldehyde. Evidence is presented that the phosphate-transporter system is situated in the inner membrane of rat liver mitochondria and is also present in other types of mammalian mitochondria.  相似文献   

16.
In isolated Acanthamoeba castellanii mitochondria respiring in state 3 with external NADH or succinate, the linoleic acid-induced purine nucleotide-sensitive uncoupling protein activity is able to uncouple oxidative phosphorylation. The linoleic acid-induced uncoupling can be inhibited by a purine nucleotide (GTP) when quinone (Q) is sufficiently oxidized, indicating that in A. castellanii mitochondria respiring in state 3, the sensitivity of uncoupling protein activity to GTP depends on the redox state of the membranous Q. Namely, the inhibition of the linoleic acid-induced uncoupling by GTP is not observed in uninhibited state 3 respiration as well as in state 3 respiration progressively inhibited by complex III inhibitors, i.e., when the rate of quinol (QH2)-oxidizing pathway is decreased. On the contrary, the progressive decrease of state 3 respiration by declining respiratory substrate availability (by succinate uptake limitation or by decreasing external NADH concentration), i.e., when the rate of Q-reducing pathways is decreased, progressively leads to a full inhibitory effect of GTP. Moreover, in A. castellanii mitochondria isolated from cold-treated cells, where a higher uncoupling protein activity is observed, the inhibition of the linoleic acid-induced proton leak by GTP is revealed for the same low values of the Q reduction level.  相似文献   

17.
L.De Jong  M. Holtrop  A.M. Kroon 《BBA》1978,501(3):405-414
Treatment of rats with thiamphenicol in a dose of 125 mg/kg per day for 60–64 h causes specific inhibition of mitochondrial protein synthesis, leading to a drastic decrease of the cytochrome c oxidase activity in intestinal epithelium. At the same time the mitochondrial ATPase activity becomes resistant to inhibition by oligomycin. Experiments with isolated intestinal mitochondria revealed that respiration in state 3 is diminished by 55% with succinate (5 mM) and by 40% with pyruvate (10 mM) plus L-malate (2 mM) as the substrates, both as compared to intestinal mitochondria isolated from control rats. P : O ratios as well as respiratory control indices are comparable in the two groups of animals. Uncoupled respiration is inhibited by 35% with succinate as the substrate, while the succinate cytochrome c reductase activity remains unaltered. No inhibition of uncoupled respiration with pyruvate plus L-malate as the substrates was observed. The ATP-Pi exchange activity in the mitochondria from the treated animals is diminished by about 75%. It is concluded that in the mitochondria of the treated animals the inhibition of the coupled respiration (state 3) is caused by the limitation of the ATP-generating capacity and that electron transport is rate limiting only with the rapidly oxidized substrates such as succinate, if respiration is uncoupled.  相似文献   

18.
The effect of acute respiratory hypoxia in rats on mitochondrial respiration, adenine nucleotides and some amino acids of the heart was studied. The decrease in the total (ATP + ADP + AMP) and exchangeable (ATP + ADP) adenine nucleotide pool of the mitochondria was accompanied by a pronounced loss of state 3 respiration with glutamate plus malate and a slight decrease with succinate plus rothenone. The uncoupled respiration of mitochondria with glutamate and malate was decreased in the same degree as in the absence of 2,4-dinitrophenol. State 4 respiration with substrates of both types was unaffected by hypoxia. These data point to a hypoxia-induced impairment of complex I of the respiratory chain. The decrease of tissue and mitochondrial glutamate was accompanied by the elevation of alanine content in the heart and an increase in intramitochondrial aspartate. The ADP-stimulated respiration of mitochondria was correlated with mitochondrial glutamate and ATP as well as with exchangeable adenine nucleotide pools during hypoxia. The experimental results suggest that mitochondrial dysfunction induced by hypoxia may also be attributed to the low level of mitochondrial glutamate.  相似文献   

19.
Mitochondria are increasingly recognized as lynchpins in the evolution of cardiac injury during ischemia and reperfusion. This review addresses the emerging concept that modulation of mitochondrial respiration during and immediately following an episode of ischemia can attenuate the extent of myocardial injury. The blockade of electron transport and the partial uncoupling of respiration are two mechanisms whereby manipulation of mitochondrial metabolism during ischemia decreases cardiac injury. Although protection by inhibition of electron transport or uncoupling of respiration initially appears to be counterintuitive, the continuation of mitochondrial oxidative phosphorylation in the pathological milieu of ischemia generates reactive oxygen species, mitochondrial calcium overload, and the release of cytochrome c. The initial target of these deleterious mitochondrial-driven processes is the mitochondria themselves. Consequences to the cardiomyocyte, in turn, include oxidative damage, the onset of mitochondrial permeability transition, and activation of apoptotic cascades, all favoring cardiomyocyte death. Ischemia-induced mitochondrial damage carried forward into reperfusion further amplifies these mechanisms of mitochondrial-driven myocyte injury. Interruption of mitochondrial respiration during early reperfusion by pharmacologic blockade of electron transport or even recurrent hypoxia or brief ischemia paradoxically decreases cardiac injury. It increasingly appears that the cardioprotective paradigms of ischemic preconditioning and postconditioning utilize modulation of mitochondrial oxidative metabolism as a key effector mechanism. The initially counterintuitive approach to inhibit mitochondrial respiration provides a new cardioprotective paradigm to decrease cellular injury during both ischemia and reperfusion. cardiolipin; cytochrome c; complex I; cytochrome oxidase  相似文献   

20.
We examined brain mitochondrial function in normo- (5 mM) and hyperglycemic (50 mM) cats after 8 min of anoxia. In anoxic normoglycemic cats, mitochondrial state 3 respiration with NAD-linked substrates glutamate or pyruvate (both plus malate) was inhibited 30-50%. The uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) maximally stimulated respiration, indicating that inhibition of phosphorylation, not impairment of electron transport, substrate transport, or oxidation was present. State 3 respiration with succinate (plus rotenone) was unaffected. Mitochondrial respiratory control ratios trended toward reductions whereas ADP/O ratios remained unchanged. In contrast, brain mitochondria from anoxic hyperglycemic cats showed no such inhibition of state 3 respiration and no differences in function from normo- and hyperglycemic control animals except for trends toward loose coupling. Significantly higher brain tissue glucose concentrations were present in hyperglycemic controls as the only metabolite difference compared to normoglycemic controls. At the end of anoxia, hyperglycemic cats exhibited significantly higher cortical lactate and glucose levels but similarly reduced high-energy phosphate concentrations compared to normoglycemic cats. These results demonstrate that increased availability of glucose to gray matter as a consequence of hyperglycemia maintains normal mitochondrial state 3 respiration during exposure to anoxia. Previous survival studies have shown that lower serum glucose concentrations during anoxia are relatively brain protective. This result indicates that the presently described alterations in mitochondrial respiration must be fully reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号