首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. The persistence of cell lifetimes during about 10 successive cell generations was investigated by comparing the number of cells in primary colonies and in secondary colonies derived from primary colonies. Primary colonies were grown from single cells for 3 or 4 days (a time equivalent to an average of five cell generations) and the number of cells in each primary colony determined. Cells in each primary colony were dispersed to initiate secondary colonies, grown for the same time, and the number of cells in secondary colonies determined. Several criteria were used to compare primary and related secondary colonies, the most informative was found to be regression and correlation coefficients between number of cells in primary colonies and mean numbers of cells in related secondary colonies. For two non-transformed mouse fibroblast cell lines, NIH 3T3 and BALB 3T3, the regression and correlation coefficients of cell number in primary and secondary colonies were positive. This suggests inheritance of cell lifetimes over many cell generations. After the addition of an activated ras oncogene (human cellular Harvey ras , or viral Kirsten ras ) some regression and correlation coefficients changed in magnitude but all remained positive. Comparison of experimental data and the results of computer simulations suggest that several models of inheritance of cell lifetimes are not adequate to explain the results, including a model of independence between lifetimes of mother and daughter cells and the common model that describes daughter cells as inheriting the lifetime of their mother with deviation. Simulations do suggest that cell lifetimes are inherited within clones as deviation from the lifetime of the initial cell, and that the ras oncogene does not destroy persistence within clones but does increase heterogeneity of cell lifetimes.  相似文献   

2.
A new approach to the kinetics of cell proliferation, based on the postulated restriction of the number of cell divisions in an organism gives the possibility to determine the individual lifetimes of cells. In the model, a necessary condition for a steady-state population is that two sister cells have distinct lifetimes. A steady state was obtained as a consequence of constant rate of cell production in each generation, when sister cell divisions alternated. The mean value of the generation time of cells is in the direct proportion to the number of cells in each generation and connected (with a coefficient of 2) with the generation number. In consequence, we attach great importance to the identification of cells belonging to distinct generations. Corresponding mathematical method to determine the cell population parameters is given and conclusions about stem cells' organization have been drawn.  相似文献   

3.
Fluorescence lifetimes of dimeric rabbit muscle creatine kinase specifically dansylated at both active sites and the homologous monomeric lobster muscle arginine kinase singly dansylated were determined using phase-modulation methods with global analysis of overdetermined data sets. For both proteins, the data is adequately described by three discrete exponential decays or a Lorentzian double distributed decay. Analogue phase resolved spectroscopy also reveals the presence of at least two distinct fluorophore domains for the dansyl moieties of creatine kinase. The model fluorophore, dansyllysine, exhibits a monoexponential decay with a value that is highly solvent dependent. Because the monomeric arginine kinase exhibits essentially the same decay law as doubly derivatized dimeric creatine kinase, it is proposed that the multiple lifetimes of creatine kinase reflect two or more isomeric dimeric states and not subunit asymmetry within a conformationally homogeneous dimeric population. Exposure of arginine kinase to 6 M guanidinium chloride results in a shift to shorter lifetimes and narrowing of the lifetime distributions. Creatine kinase displays a small narrowing of the distribution, but little change in fractional populations or lifetimes. These results suggest the presence of structural elements resistant to denaturation. The longest lifetime component in the triexponential discrete decay law of doubly dansylated creatine kinase is totally unquenched by acrylamide, whereas the two shorter lifetime components exhibit limited dynamic quenching. Steady-state quenching by acrylamide is significant and reveals a sharp distinction between accessible and nonaccessible dansyl groups. The major mechanism for interaction between the dansyl moieties and acrylamide is, atypically, static quenching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Fluorescence properties of reduced flavins and flavoproteins   总被引:1,自引:0,他引:1  
Fluorescence lifetimes and polarized emission properties of reduced flavin were measured using several model compounds and flavoproteins. Depending on the conditions of solvent and temperature or reduction method the lifetimes vary between 1 and 15 ns. The longer lifetime values are found in several forms of reduced lactate oxidase, in which a good correlation exists between fluorescence intensity and lifetime. In practically all flavoproteins the fluorescence is heterogeneous. Several mechanisms are proposed to explain the observed heterogeneity in lifetimes. The reduced models in glycerol at subzero temperature exhibit high degrees of polarization of the fluorescence, whereas distinct depolarization is encountered in several reduced flavoproteins suggesting a certain mobility of the flavin chromophor.  相似文献   

5.
《Biophysical journal》2022,121(6):1070-1080
By analyzing the distributions of focal adhesion (FA) lifetimes from different cell types, we found that a gamma distribution best matched the experimental distributions. In all but one case, it was a unimodal, non-symmetric gamma distribution. We used a mathematical model of cell motion to help understand the mechanics and data behind the FA lifetime distributions. The model uses a detach-rate function to determine how long an FA will persist before it detaches. The detach-rate function that produced distributions with a best-fit gamma curve that closely matched that of the data was both force and time dependent. Using the data gathered from the matching simulations, we calculated both the cell speed and mean FA lifetime and compared them. Where available, we also compared this relationship to that of the experimental data and found that the simulation reasonably matches it in most cases. In both the simulations and experimental data, the cell speed and mean FA lifetime are related, with longer mean lifetimes being indicative of slower speeds. We suspect that one of the main predictors of cell speed for migrating cells is the distribution of the FA lifetimes.  相似文献   

6.
Conventional analyses of fluorescence lifetime measurements resolve the fluorescence decay profile in terms of discrete exponential components with distinct lifetimes. In complex, heterogeneous biological samples such as tissue, multi-exponential decay functions can appear to provide a better fit to fluorescence decay data than the assumption of a mono-exponential decay, but the assumption of multiple discrete components is essentially arbitrary and is often erroneous. Moreover, interactions, both between fluorophores and with their environment, can result in complex fluorescence decay profiles that represent a continuous distribution of lifetimes. Such continuous distributions have been reported for tryptophan, which is one of the main fluorophores in tissue. This situation is better represented by the stretched-exponential function (StrEF). In this work, we have applied, for the first time to our knowledge, the StrEF to time-domain whole-field fluorescence lifetime imaging (FLIM), yielding both excellent tissue contrast and goodness of fit using data from rat tissue. We note that for many biological samples for which there is no a priori knowledge of multiple discrete exponential fluorescence decay profiles, the StrEF is likely to provide a truer representation of the underlying fluorescence dynamics. Furthermore, fitting to a StrEF significantly decreases the required processing time, compared with a multi-exponential component fit and typically provides improved contrast and signal/noise in the resulting FLIM images. In addition, the stretched-exponential decay model can provide a direct measure of the heterogeneity of the sample, and the resulting heterogeneity map can reveal subtle tissue differences that other models fail to show.  相似文献   

7.
Fluorescence lifetime imaging microscopy (FLIM) is a technique in which the mean fluorescence lifetime of a chromophore is measured at each spatially resolvable element of a microscope image. The nanosecond excited-state lifetime is independent of probe concentration or light path length but dependent upon excited-state reactions such as fluorescence resonance energy transfer (FRET). These properties of fluorescence lifetimes allow exploration of the molecular environment of labelled macromolecules in the interior of cells. Imaging of fluorescence lifetimes enables biochemical reactions to be followed at each microscopically resolvable location within the cell.  相似文献   

8.
Single-tryptophan-containing mutants of low adenylation state Escherichia coli glutamine synthetase (wild type has two tryptophans at positions 57 and 158) have been constructed and studied by multifrequency phase/modulation fluorescence spectroscopy. The W57L mutant (retains tryptophan at residue 158) and the W158S mutant (retains tryptophan at residue 57) are both characterized by heterogeneous exponential decay kinetics. Global analysis indicates that for the Mn-bound form of the enzyme at pH 7.4 the fluorescence of both tryptophans is best described by a sum of three discrete expontials with recovered lifetimes of 4.77, 1.72, and 0.10 ns for Trp-57 and 5.04, 2.28, and 0.13 ns for Trp-158. The wild-type enzyme also exhibits decay kinetics described by a triple-exponential model with similar lifetime components. The individual tryptophans are distinguishable by the fractional intensities of the resolvable lifetimes. The wild-type and W158S enzymes are dominated by the 5-ns component which provides nearly 60% and 65%, respectively, of the fractional intensity at five wavelengths spanning the emission spectrum. In contrast, the W57L enzyme demonstrates a larger fraction of the 2-ns lifetime species (60%) and only 35% of the longer lifetime component. The substrate ATP induces a shift to approximately 90% of the 5-ns component for the wild-type and W158S enzymes, whereas the W57L protein is essentially unaffected by this ligand. Steady-state quenching studies with iodide indicate that addition of ATP results in a 3.0-3.5-fold decrease in the apparent Stern-Volmer quenching constants for the wild-type and W158S enzymes. Phase/modulation experiments at several iodide concentrations indicate that the median, 2 ns, lifetime component is selectively quenched compared to the 5-ns lifetime component. These results suggest a model where ATP binding results in a shift in the equilibrium distribution of microconformational states populated by Trp-57. ATP shifts this equilibrium nearly completely to the states exhibiting the long-lifetime component which, based on quenching studies, is less solvent-accessible than the conformational states associated with the other lifetime components.  相似文献   

9.
A J Klar 《The EMBO journal》1990,9(5):1407-1415
A key feature for development consists of producing sister cells that differ in their potential for cellular differentiation. Following two cell divisions, a haploid Schizosaccharomyces pombe cell produces one cell in four 'granddaughters' with a changed mating cell type, implying nonequivalence of sister cells in each of two consecutive cell divisions. The observed pattern of switching is analogous to the mammalian 'stem cell' lineage by which a cell produces one daughter like itself while the other daughter is advanced in its developmental program. It is tested here whether sisters differ because of unequal distribution of cytoplasmic and/or nuclear components to them or due to inheriting a specific parental DNA chain at the mating type locus. Only the DNA strand-segregation model predicts that those cells engineered to contain an inverted tandem duplication of the mating type locus should produce equivalent sisters. Consequently, two 'cousins' in four related granddaughter cells should switch. The results verified the prediction, thus establishing that all cells otherwise fully possess the potential to switch. Therefore, the program of cell type change in S.pombe cell lineages is determined by the pattern of DNA strand inheritance at the mating type locus. A specific DNA sequence present at the mating type locus is postulated to be the cause of developmental asymmetry between sister cells. A general model for cellular differentiation is proposed in which the act of DNA replication itself is hypothesized to produce developmentally nonequivalent sister genomes.  相似文献   

10.
Lipid rafts, the functional microdomains in the cell membrane, are believed to exist as liquid-ordered (Lo) phase domains along with the liquid-disordered (Ld) phase of the bulk of the cell membranes. We have examined the lipid order in model and natural membranes by time-resolved fluorescence of trimethylammonium-1,6-diphenylhexatriene incorporated into the membranes. The lipid phases were discerned by the limiting anisotropy, rotational diffusion rate and distribution of the fluorescence lifetime. In dipalmitoylphosphatidylcholine (DPPC)-cholesterol mixtures the gel phase exhibited higher anisotropy and a two-fold slower rotational diffusion rate of the probe as compared to the Ld phase. On the other hand, the Lo phase exhibited higher limiting anisotropy but a rotational diffusion rate comparable to the Ld phase. The Ld and Lo phases elicited unimodal distribution of lifetimes with distinct mean values and their co-existence in phospholipid-cholesterol mixtures was reflected as a biphasic change in the width of the lifetime distribution. Global analysis of the lifetimes yielded a best fit with two lifetimes which were identical to those observed in single Lo or Ld phases, but their fractional contribution varied with cholesterol concentration. Attributing the shorter and longer lifetime components to the Ld and Lo phases, respectively, the extent of the Lo/Ld phase domains in the membranes was estimated by their fractional contribution to the fluorescence decay. In ternary mixtures of egg PC-gangliosides-cholesterol, the gangliosides induced heterogeneity in the membrane but the Ld phase prevailed. The Lo phase properties were observed only in the presence of cholesterol. Results obtained in the plasma membrane and detergent-resistant membrane fractions (DRMs) isolated from U-87 MG cells revealed that DRMs mainly possess the Lo phase; however, a substantially large proportion of plasma membrane also exists in the Lo phase. Our data show that, besides cholesterol, the membrane proteins play a significant role in the organization of lipid rafts and, furthermore, a considerable amount of heterogeneity is present among the lipid rafts.  相似文献   

11.
S Stojanovi?  D Hranueli  M Young 《Biochimie》1992,74(7-8):713-721
An experimental system was designed to permit the detection of recombination events occurring via unequal crossing over between sister bacterial chromosomes in Bacillus subtilis. It exploits the fact that during spore development, genetic and metabolic cooperation occurs between two different cell types, only one of which survives. During the early stages of sporulation, the two chromosomes of the developing sporangiole lie in the same cell and recombination between them is possible, in principle. Internal duplications flanking a selectable antibiotic-resistance gene have been introduced into the spoIIIC, spoIVA and spoVJ genes, whose correct expression in the mother cell (non-surviving compartment) is necessary for completion of spore development. After incubation in a sporulation-inducing medium in the absence of selective pressure, these strains sporulate at a low frequency and up to 30% of the progeny are Spo-. They result from mosaic sporangioles, in which only the chromosome segregated into the mother cell compartment of the developing sporangiole contains a reconstituted spo gene. In mosaic sporangioles generated by unequal crossing over between sister bacterial chromosomes, the insertionally inactivated spo gene, segregated into the pre-spore compartment, would carry an extra copy of the duplication initially present. Analysis of the products of 124 independent recombination events giving rise to mosaic sporangioles provided no evidence for the occurrence of unequal crossing over.  相似文献   

12.
《Biophysical journal》2023,122(4):672-683
Fluorescence lifetime imaging captures the spatial distribution of chemical species across cellular environments employing pulsed illumination confocal setups. However, quantitative interpretation of lifetime data continues to face critical challenges. For instance, fluorescent species with known in vitro excited-state lifetimes may split into multiple species with unique lifetimes when introduced into complex living environments. What is more, mixtures of species, which may be both endogenous and introduced into the sample, may exhibit 1) very similar lifetimes as well as 2) wide ranges of lifetimes including lifetimes shorter than the instrumental response function or whose duration may be long enough to be comparable to the interpulse window. By contrast, existing methods of analysis are optimized for well-separated and intermediate lifetimes. Here, we broaden the applicability of fluorescence lifetime analysis by simultaneously treating unknown mixtures of arbitrary lifetimes—outside the intermediate, Goldilocks, zone—for data drawn from a single confocal spot leveraging the tools of Bayesian nonparametrics (BNP). We benchmark our algorithm, termed BNP lifetime analysis, using a range of synthetic and experimental data. Moreover, we show that the BNP lifetime analysis method can distinguish and deduce lifetimes using photon counts as small as 500.  相似文献   

13.
Interactions of several acridine dyes with DNA from different species were studied by measuring fluorescence lifetimes in the 2–30-nsec range, using the single-photon counting technique, and by measuring fluorescence quantum yields in the steady state. The results confirm the existence of two principal site classes, one in which the dye fluorescence is quenched by interaction with guanine and another in which fluorescence results from the hydrophobic environment of the A·T base pairs. The emitting sites are found, in some cases, to exhibit fluorescent decay curves which can be resolved into two exponential components corresponding to a short and to a long lifetime. The deviation from one exponential component is particularly clear with rivanol, 9-aminoacridine, and quinacrine, with which one component is two or three times longer than the other. The relative proportion of these two components depends only slightly on the DNA base composition and does not depend on the nature of the acridine derivatives. We postulate that this lifetime heterogeneity corresponds to the two discrete steps in the complex formation elucidated by kinetic studies: the first step corresponds to a semi-intercalated, or “external,” dye with a short fluorescence lifetime and the second step corresponds to a totally intercalated dye with a long lifetime. In this model, we assumed that a transient opening of the site near a semi-intercalated dye induces solvent diffusion which in turn is responsible for its short-lived fluorescence.  相似文献   

14.
Conformational change in rat liver phenylalanine hydroxylase associated with activation by phenylalanine or N-(1-anilinonaphth-4-yl)maleimide was investigated by measuring fluorescence spectra and fluorescence lifetimes of tryptophanyl residues as well as the probe fluorophore conjugated with SH groups of the hydroxylase. The fluorescence spectrum of tryptophan exhibited its maximum at 342 nm. It shifted by 8 nm toward longer wavelength accompanied by an increase in its intensity, by preincubation with 1 mM phenylalanine. The fluorescence intensity of tryptophan increased by 36% upon the activation. On the other hand, the binding of (6R)-L-erythro-tetrahydrobiopterin, a natural cofactor of the enzyme, induced a decrease in the fluorescence intensity by 79% without a shift of the maximum wavelength. The fluorescence lifetime of tryptophan of phenylalanine hydroxylase exhibited two components with lifetimes of 1.7 and 4.1 ns. The values of the lifetimes changed to 1.4 and 5.6 ns, respectively, upon the activation. It is considered that the change in the longer lifetime is correlated with the shift of the emission peak upon the activation. The values of both the lifetimes decreased to 0.64 and 3.6 ns upon the binding of (6R)-L-erythro-tetrahydrobiopterin, which is coincident with the decrease in the fluorescence intensity. Conjugation of N-(1-anilinonaphth-4-yl)maleimide with SH of phenylalanine hydroxylase brought about a decrease in both the fluorescence intensity and the value of the shorter lifetime of the tryptophanyl residues, while the longer lifetime remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The fluorescent probe 1-anilinonaphthalene 8-sulfonate was used to examine the binding of spin-labeled local anesthetics to lipid model systems, to the membranes of human red blood cells, and rabbit sarcoplasmic reticulum. 1-Anilinonaphthalene 8-sulfonate exhibits two distinct fluorescent lifetimes when bound to these biological membranes. The shorter lifetime represents the probe associated with the purely lipid region while the longer lifetime is associated with the protein region. The spin-labeled local anesthetic quenches the fluorescence of both of these components as indicated by the decrease in the lifetimes. Since nitroxide free radicals are known to quench fluorophores upon 'contract', the results reflect the relative interaction of local anesthetics with membrane lipids and proteins. The evidence is consistent with the concept of multiple binding sites for local anesthetics in membranes. Local anesthetics, once intercalated into the bilayer, may diffuse laterally and interact with membrane components, lipid as well as proteins. In biological membranes, however, positively charged local anesthetics are better able to quench 1-anilinonaphthalene 8-sulfonate in protein regions, suggesting that the interaction between local anesthetics and membrane proteins can be electrostatic in nature.  相似文献   

16.
The fluorescence lifetime of fluorescent proteins is affected by the concentration of solutes in a medium, in inverse correlation with local refractive index. In this paper, we introduce the concept of using this dependence to probe cellular molecular environment and its transformation during cellular processes. We employ the fluorescence lifetime of Green Fluorescent Protein and tdTomato Fluorescent Protein expressed in cultured cells and probe the changes in the local molecular environment during the cell cycle progression. We report that the longest fluorescence lifetimes occurred during mitosis. Following the cell division, the fluorescence lifetimes of these proteins were rapidly shortened. Furthermore the fluorescence lifetime of tdTomato in the nucleoplasm gradually increased throughout the span of S-phase and remained constantly long until the end of interphase. We interpret the observed fluorescence lifetime changes to be derived from changes in concentration of macromolecular solutes in the cell interior throughout cell cycle progression.  相似文献   

17.
This work describes mathematically the dynamics of expansion of cell populations from the initial division of single cells to colonies of several hundred cells. This stage of population growth is strongly influenced by stochastic (random) elements including, among others, cell death and quiescence. This results in a wide distribution of colony sizes. Experimental observations of the NIH3T3 cell line as well as for the NIH3T3 cell line transformed with the ras oncogene were obtained for this study. They include the number of cells in 4-day-old colonies initiated from single cells and measurements of sizes of sister cells after division, recorded in the 4-day-old colonies. The sister cell sizes were recorded in a way which enabled investigation of their interdependence. We developed a mathematical model which includes cell growth and unequal cell division, with three possible outcomes of each cell division: continued cell growth and division, quiescence, and cell death. The model is successful in reproducing experimental observations. It provides good fits to colony size distributions for both NIH3T3 mouse fibroblast cells and the same cells transformed with the rasEJ human cancer gene. The difference in colony size distributions could be fitted by assuming similar cell lifetimes (12-13 hr) and similar probabilities of cell death (q = 0.15), but using different probabilities of quiescence, r = 0 for the ras oncogene transformed cells and r = 0.1 for the non-transformed cells. The model also reproduces the evolution of distributions of sizes of cells in colonies, from a single founder cell of any specified size to the stable limit distribution after eight to ten cell divisions. Application of the model explains in what way both random events and deterministic control mechanisms strongly influence cell proliferation at early stages in the expansion of colonies.  相似文献   

18.
19.
E Bismuto  G Irace  E Gratton 《Biochemistry》1989,28(4):1508-1512
The tryptophanyl fluorescence decays of two myoglobins, i.e., sperm whale and tuna myoglobin, have been examined in the frequency domain with an apparatus which utilizes the harmonic content of a mode-locked laser. Data analysis was performed in terms of continuous distribution of lifetime having a Lorentzian shape. Data relative to sperm whale myoglobin, which possesses two tryptophanyl residues, i.e., Trp-A-5 and -A-12, provided a broad lifetime distribution including decay rates from a few picoseconds to about 10 ns. By contrast, the tryptophanyl lifetime distribution of tuna myoglobin, which contains only Trp-A-12, showed two well-separated and narrow Lorentzian components having centers at about 50 ps and 3.37 ns, respectively. In both cases, the chi 2 obtained from distribution analysis was lower than that provided by a fit using the sum of exponential components. The long-lived components present in the fluorescence decay of the two myoglobins do not correspond to any of those observed for the apoproteins at neutral pH. The tryptophanyl lifetime distribution of sperm whale apomyoglobin consists of two separated Lorentzian components centered at 2.25 and 5.4 ns, whereas that of tuna apomyoglobin consists of a single Lorentzian component, whose center is at 2.19 ns. Acidification of apomyoglobin to pH 3.5 produced a shift of the distribution centers toward longer lifetimes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A model is proposed that describes the growth of cell populations, in which the cycle durations of mother and daughter and of sister cells can be correlated. The model accounts for arbitrary frequency distributions of cycle durations and for arbitrary correlations. Depending on the mother-daughter correlations, the frequency distribution of cycle durations either remains the same or changes from one cell generation to the next one. Both phenomena are described in the literature for different cell populations. Sister-sister correlations are shown to influence only numerical values in the model but not the model's structure. Model calculations with different types of correlations are compared with growth data on the ciliate Tetrahymena geleii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号