首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The central spindle forms between segregating chromosomes during anaphase and is required for cytokinesis. Although anaphase-specific bundling and stabilization of interpolar microtubules (MTs) contribute to formation of the central spindle, it remains largely unknown how these MTs are prepared. Using live imaging of MT plus ends and an MT depolymerization and regrowth assay, we show that de novo MT generation in the interchromosomal region during anaphase is important for central spindle formation in human cells. Generation of interchromosomal MTs and subsequent formation of the central spindle occur independently of preanaphase MTs or centrosomal MT nucleation but require augmin, a protein complex implicated in nucleation of noncentrosomal MTs during preanaphase. MTs generated in a hepatoma up-regulated protein (HURP)-dependent manner during anaphase also contribute to central spindle formation redundantly with preanaphase MTs. Based on these results, a new model for central spindle assembly is proposed.  相似文献   

2.
The temporal and spatial regulation of cytokinesis requires an interaction between the anaphase mitotic spindle and the cell cortex. However, the relative roles of the spindle asters or the central spindle bundle are not clear in mammalian cells. The central spindle normally serves as a platform to localize key regulators of cell cleavage, including passenger proteins. Using time-lapse and immunofluorescence analysis, we have addressed the consequences of eliminating the central spindle by ablation of PRC1, a microtubule bundling protein that is critical to the formation of the central spindle. Without a central spindle, the asters guide the equatorial cortical accumulation of anillin and actin, and of the passenger proteins, which organize into a subcortical ring in anaphase. Furrowing goes to completion, but abscission to create two daughter cells fails. We conclude the central spindle bundle is required for abscission but not for furrowing in mammalian cells.  相似文献   

3.
During cytokinesis of animal cells, the mitotic spindle plays at least two roles. Initially, the spindle positions the contractile ring. Subsequently, the central spindle, which is composed of microtubule bundles that form during anaphase, promotes a late step in cytokinesis. How the central spindle assembles and functions in cytokinesis is poorly understood. The cyk-4 gene has been identified by genetic analysis in Caenorhabditis elegans. Embryos from cyk-4(t1689ts) mutant hermaphrodites initiate, but fail to complete, cytokinesis. These embryos also fail to assemble the central spindle. We show that the cyk-4 gene encodes a GTPase activating protein (GAP) for Rho family GTPases. CYK-4 activates GTP hydrolysis by RhoA, Rac1, and Cdc42 in vitro. RNA-mediated interference of RhoA, Rac1, and Cdc42 indicates that only RhoA is essential for cytokinesis and, thus, RhoA is the likely target of CYK-4 GAP activity for cytokinesis. CYK-4 and a CYK-4:GFP fusion protein localize to the central spindle and persist at cell division remnants. CYK-4 localization is dependent on the kinesin-like protein ZEN-4/CeMKLP1 and vice versa. These data suggest that CYK-4 and ZEN-4/CeMKLP1 cooperate in central spindle assembly. Central spindle localization of CYK-4 could accelerate GTP hydrolysis by RhoA, thereby allowing contractile ring disassembly and completion of cytokinesis.  相似文献   

4.
We describe here a new member of the kinesin superfamily in Drosophila, KLP3A (Kinesin-Like-Protein-at-3A). The KLP3A protein localizes to the equator of the central spindle during late anaphase and telophase of male meiosis. Mutations in the KLP3A gene disrupt the interdigitation of microtubules in spermatocyte central spindles. Despite this defect, anaphase B spindle elongation is not obviously aberrant. However, cytokinesis frequently fails after both meiotic divisions in mutant testes. Together, these findings strongly suggest that the KLP3A presumptive motor protein is a critical component in the establishment or stabilization of the central spindle. Furthermore, these results imply that the central spindle is the source of signals that initiate the cleavage furrow in higher cells.  相似文献   

5.
We have identified an 80-kD protein that is involved in mitotic spindle elongation in the diatom Cylindrotheca fusiformis. DSK1 (Diatom Spindle Kinesin 1) was isolated using a peptide antibody raised against a conserved region in the motor domain of the kinesin superfamily. By sequence homology, DSK1 belongs to the central motor family of kinesin- related proteins. Immunoblots using an antibody raised against a non- conserved region of DSK1 show that DSK1 is greatly enriched in mitotic spindle preparations. Anti-DSK1 stains in diatom central spindle with a bias toward the midzone, and staining is retained in the spindle midzone during spindle elongation in vitro. Furthermore, preincubation with anti-DSK1 blocks function in an in vitro spindle elongation assay. This inhibition of spindle elongation can be rescued by preincubating concurrently with the fusion protein against which anti-DSK1 was raised. We conclude that DSK1 is involved in spindle elongation and is likely to be responsible for pushing hal-spindles apart in the spindle midzone.  相似文献   

6.
Cell multiplication requires sequestration of the duplicated and segregated genome into two daughter cells. The mitotic spindle is critical for orchestrating sister chromatid separation and division plane positioning. During anaphase, spindle microtubules become bundled to form the central spindle, which is essential for completion of cytokinesis. Central spindle assembly is mediated by a microtubule-associated protein and a kinesin-RhoGAP complex, both of which are regulated by phosphorylation/dephosphorylation. The central spindle also plays a role in cleavage furrow positioning, which appears to involve activation of RhoA. New results have provided some initial clues as to how furrow positioning is achieved. Particularly notable is the discovery that a protein activated by RhoA, formin, has actin nucleation activity.  相似文献   

7.
The formation of the central spindle (or the spindle midzone) is essential for cytokinesis in animal cells. In this study, we report that coiled-coil domain-containing protein 69 (CCDC69) is implicated in controlling the assembly of central spindles and the recruitment of midzone components. Exogenous expression of CCDC69 in HeLa cells interfered with microtubule polymerization and disrupted the formation of bipolar mitotic spindles. Endogenous CCDC69 proteins were localized to the central spindle during anaphase. RNA interference (RNAi)-mediated knockdown of CCDC69 led to the formation of aberrant central spindles and disrupted the localization of midzone components such as aurora B kinase, protein regulator of cytokinesis 1 (PRC1), MgcRacGAP/HsCYK-4, and polo-like kinase 1 (Plk1) at the central spindle. Aurora B kinase was found to bind to CCDC69 and this binding depended on the coiled-coil domains at the C-terminus of CCDC69. Further, disruption of aurora B function in HeLa cells by treatment with a small chemical inhibitor led to the mislocalization of CCDC69 at the central spindle. Our results indicate that CCDC69 acts as a scaffold to regulate the recruitment of midzone components and the assembly of central spindles.  相似文献   

8.
During cytokinesis, the organization of the spindle midzone and chromosome segregation is controlled by the central spindle, a microtubule cytoskeleton containing kinesin motors and non‐motor microtubule‐associated proteins. The anaphase spindle elongation 1/protein regulator of cytokinesis 1/microtubule associated protein 65 (Ase1/PRC1/MAP65) family of microtubule‐bundling proteins are key regulators of central spindle assembly, mediating microtubule crosslinking and spindle elongation in the midzone. Ase1/PRC1/MAP65 serves as a complex regulatory platform for the recruitment of other midzone proteins at the spindle midzone. Herein, we summarize recent advances in understanding of the structural domains and molecular kinetics of the Ase1/PRC1/MAP65 family. We summarize the regulatory network involved in post‐translational modifications of Ase1/PRC1 by cyclin‐dependent kinase 1 (Cdk1), cell division cycle 14 (Cdc14) and Polo‐like kinase 1 (Plk1) and also highlight multiple functions of Ase1/PRC1 in central spindle organization, spindle elongation and cytokinesis during cell division.  相似文献   

9.
Cooperative communications between the central spindle and the contractile ring are critical for the spatial and temporal regulation of cytokinesis. Here we report that MyoGEF, a guanine nucleotide exchange factor that localizes to the central spindle and cleavage furrow, interacts with centrosome/spindle pole-associated protein (CSPP), which is concentrated at the spindle pole and central spindle during mitosis and cytokinesis. Both in vitro and in vivo pulldown assays show that MyoGEF interacts with CSPP. The C-terminus of MyoGEF and N-terminus of CSPP are required for their interaction. Immunofluorescence analysis indicates that MyoGEF and CSPP colocalize at the central spindle. Depletion of CSPP or MyoGEF by RNA-interference (RNAi) not only causes defects in mitosis and cytokinesis, such as metaphase arrest and furrow regression, but also mislocalization of nonmuscle myosin II with a phosphorylated myosin regulatory light chain (p-MRLC). Importantly, CSPP depletion by RNAi interferes with MyoGEF localization at the central spindle. Finally, MyoGEF interacts with ECT2, and RNAi-mediated depletion of MyoGEF leads to mislocalization of ECT2 and RhoA during cytokinesis. Therefore, we propose that CSPP interacts with and recruits MyoGEF to the central spindle, where MyoGEF contributes to the spatiotemporal regulation of cytokinesis.  相似文献   

10.
In the oocytes of many species, bipolar spindles form in the absence of centrosomes. Drosophila melanogaster oocyte chromosomes have a major role in nucleating microtubules, which precedes the bundling and assembly of these microtubules into a bipolar spindle. Here we present evidence that a region similar to the anaphase central spindle functions to organize acentrosomal spindles. Subito mutants are characterized by the formation of tripolar or monopolar spindles and nondisjunction of homologous chromosomes at meiosis I. Subito encodes a kinesinlike protein and associates with the meiotic central spindle, consistent with its classification in the Kinesin 6/MKLP1 family. This class of proteins is known to be required for cytokinesis, but our results suggest a new function in spindle formation. The meiotic central spindle appears during prometaphase and includes passenger complex proteins such as AurB and Incenp. Unlike mitotic cells, the passenger proteins do not associate with centromeres before anaphase. In the absence of Subito, central spindle formation is defective and AurB and Incenp fail to properly localize. We propose that Subito is required for establishing and/or maintaining the central spindle in Drosophila oocytes, and this substitutes for the role of centrosomes in organizing the bipolar spindle.  相似文献   

11.
The formation of the central spindle (or the spindle midzone) is essential for cytokinesis in animal cells. In this study, we report that coiled-coil domain-containing protein 69 (CCDC69) is implicated in controlling the assembly of central spindles and the recruitment of midzone components. Exogenous expression of CCDC69 in HeLa cells interfered with microtubule polymerization and disrupted the formation of bipolar mitotic spindles. Endogenous CCDC69 proteins were localized to the central spindle during anaphase. RNA interference (RNAi)-mediated knockdown of CCDC69 led to the formation of aberrant central spindles and disrupted the localization of midzone components such as aurora B kinase, protein regulator of cytokinesis 1 (PRC1), MgcRacGAP/HsCYK-4, and polo-like kinase 1 (Plk1) at the central spindle. Aurora B kinase was found to bind to CCDC69 and this binding depended on the coiled-coil domains at the C-terminus of CCDC69. Further, disruption of aurora B function in HeLa cells by treatment with a small chemical inhibitor led to the mislocalization of CCDC69 at the central spindle. Our results indicate that CCDC69 acts as a scaffold to regulate the recruitment of midzone components and the assembly of central spindles.Key words: CCDC69, aurora B, Plk1, central spindles, midzone components, cytokinesis  相似文献   

12.
We address the relative roles of astral and central spindle microtubules (MTs) in cytokinesis of Drosophila melanogaster primary spermatocytes. Time-lapse imaging studies reveal that the central spindle is comprised of two MT populations, "interior" central spindle MTs found within the spindle envelope and "peripheral" astral MTs that probe the cytoplasm and initiate cleavage furrows where they contact the cortex and form overlapping bundles. The MT-associated protein Orbit/Mast/CLASP concentrates on interior rather than peripheral central spindle MTs. Interior MTs are preferentially affected in hypomorphic orbit mutants, and consequently the interior central spindle fails to form or is unstable. In contrast, peripheral MTs still probe the cortex and form regions of overlap that recruit the Pav-KLP motor and Aurora B kinase. orbit mutants have disorganized or incomplete anillin and actin rings, and although cleavage furrows initiate, they ultimately regress. Our work identifies a new function for Orbit/Mast/CLASP and identifies a novel MT population involved in cleavage furrow initiation.  相似文献   

13.
Calmodulin is a major cytoplasmic calcium receptor that performs multiple functions in the cell including cytokinesis. Central spindle appears between separating chromatin masses after metaphase-anaphase transition. The interaction of microtubules from central spindle with cell cortex regulates the cleavage furrow formation. In this paper, we use green fluorescence protein (GFP)-tagged calmodulin as a living cell probe to examine the detailed dynamic redistribution and co-localization of calmodulin with central spindle during cytokinesis and the function of this distribution pattern in a tripolar HeLa cell model. We found that calmodulin is associated with spindle microtubules during mitosis and begins to aggregate with central spindle after anaphase initiation. The absence of either central spindle or central spindle-distributed calmodulin is correlated with the defect in the formation of cleavage furrow, where contractile ring-distributed CaM is also extinct. Further analysis found that both the assembly of central spindle and the formation of cleavage furrow are affected by the W7 treatment. The microtubule density of central spindle was decreased after the treatment. Only less than 10% of the synchronized cells enter cytokinesis when treated with 25 microM W7, and the completion time of furrow regression is also delayed from 10 min to at least 40 min. It is suggested that calmodulin plays a significant role in cytokinesis including furrow formation and regression, The understanding of the interaction between calmodulin and microtubules may give us insight into the mechanism through which calmodulin regulates cytokinesis.  相似文献   

14.
Abnormal spindle (Asp) is a 220-kD microtubule-associated protein from Drosophila that has been suggested to be involved in microtubule nucleation from the centrosome. Here, we show that Asp is enriched at the poles of meiotic and mitotic spindles and localizes to the minus ends of central spindle microtubules. Localization to these structures is independent of a functional centrosome. Moreover, colchicine treatment disrupts Asp localization to the centrosome, indicating that Asp is not an integral centrosomal protein. In both meiotic and mitotic divisions of asp mutants, microtubule nucleation occurs from the centrosome, and gamma-tubulin localizes correctly. However, spindle pole focusing and organization are severely affected. By examining cells that carry mutations both in asp and in asterless, a gene required for centrosome function, we have determined the role of Asp in the absence of centrosomes. Phenotypic analysis of these double mutants shows that Asp is required for the aggregation of microtubules into focused spindle poles, reinforcing the conclusion that its function at the spindle poles is independent of any putative role in microtubule nucleation. Our data also suggest that Asp has a role in the formation of the central spindle. The inability of asp mutants to correctly organize the central spindle leads to disruption of the contractile ring machinery and failure in cytokinesis.  相似文献   

15.
Fu C  Yan F  Wu F  Wu Q  Whittaker J  Hu H  Hu R  Yao X 《Cell research》2007,17(5):449-457
During cell division, chromosome segregation is orchestrated by the interaction of spindle microtubules with thecentromere. A dramatic remodeling of interpolar microtubules into an organized central spindle between the separatingchromatids is required for the initiation and execution of cytokinesis. Central spindle organization requires mitotic kine-sins, the chromosomal passenger protein complex, and microtubule bundling protein PRC1. PRC1 is phosphorylated byCdc2 at Thr470 and Thr481 during mitosis. However, the functional relevance of PRC1 phosphorylation at Thr470 hasremained elusive. Here we show that expression of the non-phosphorylatable mutant PRC1~(T470A) but not the phospho-mimi-cking mutant PRC1~(T470E) causes aberrant organization of the central spindle. Immunoprecipitation experiment indicatesthat both PRC1~(T470A) and PRC1~(T470E) mutant proteins associate with wild-type PRC1, suggesting that phosphorylationof Thr470 does not alter PRC1 self-association. In addition, in vitro co-sedimentation experiment showed that PRC1binds to microtubule independent of the phosphorylation state of Thr470. Gel-filtration experiment suggested that phos-phorylation of Thr470 promotes oligomerization of PRC1. Given the fact that prevention of the Thr470 phosphorylationinhibits PRC1 oligomerization in vitro and causes an aberrant organization of central spindle in vivo, we propose thatthis phosphorylation-dependent PRC1 oligomerization ensures that central spindle assembly occurs at the appropriatetime in the cell cycle.  相似文献   

16.
AtMAP65-1 bundles cortical microtubules and we examined how this property is regulated during division in time-lapse studies of Arabidopsis suspension cells expressing GFP-AtMAP65-1. Spindle fluorescence is diffuse during metaphase, restored to the central spindle at anaphase and then compacted at the midline during late anaphase/early telophase. However, mutagenesis of the microtubule-associated protein (MAP) consensus Cdk site to a non-phosphorylatable form allows premature decoration of microtubules traversing the central region of the metaphase spindle without affecting the timing of the subsequent compaction. This suggests that mutagenesis does not affect compaction but does affect a phosphorylation/dephosphorylation switch that normally targets AtMAP65-1 to the central spindle at the metaphase/anaphase transition. GFP-AtMAP65-1 continues to label the midline of the early phragmoplast, suggesting a structural continuity with the central spindle - both structures being composed of anti-parallel microtubules. However, once the cytokinetic apparatus expands into a ring the MAP becomes depleted at the midline. Despite this, cytokinesis is not arrested and membrane and callose are deposited at the cell plate. It is concluded that AtMAP65-1 plays a role in the central spindle at anaphase to early cytokinesis but is not essential at the midline of the phragmoplast at later stages.  相似文献   

17.
In vertebrates, the microtubule binding protein TPX2 is required for meiotic and mitotic spindle assembly. TPX2 is also known to bind to and activate Aurora A kinase and target it to the spindle. However, the relationship between the TPX2-Aurora A interaction and the role of TPX2 in spindle assembly is unclear. Here, we identify TPXL-1, a C. elegans protein that is the first characterized invertebrate ortholog of TPX2. We demonstrate that an essential role of TPXL-1 during mitosis is to activate and target Aurora A to microtubules. Our data suggest that this targeting stabilizes microtubules connecting kinetochores to the spindle poles. Thus, activation and targeting of Aurora A appears to be an ancient and conserved function of TPX2 that plays a central role in mitotic spindle assembly.  相似文献   

18.
The formation and maintenance of the bipolar mitotic spindle apparatus require a complex and balanced interplay of several mechanisms, including the stabilization and separation of polar microtubules and the action of various microtubule motors. Nonmicrotubule elements are also present throughout the spindle apparatus and have been proposed to provide a structural support for the spindle. The Nuclear-Mitotic Apparatus protein (NuMA) is an abundant 240 kD protein that is present in the nucleus of interphase cells and concentrates in the polar regions of the spindle apparatus during mitosis. Sequence analysis indicates that NuMA possesses an unusually long alpha-helical central region characteristic of many filament forming proteins. In this report we demonstrate that microinjection of anti-NuMA antibodies into interphase and prophase cells results in a failure to form a mitotic spindle apparatus. Furthermore, injection of metaphase cells results in the collapse of the spindle apparatus into a monopolar microtubule array. These results identify for the first time a nontubulin component important for both the establishment and stabilization of the mitotic spindle apparatus in multicellular organisms. We suggest that nonmicrotubule structural components may be important for these processes.  相似文献   

19.
Precise spatiotemporal control of microtubule nucleation and organization is critical for faithful segregation of cytoplasmic and genetic material during cell division and signaling via the primary cilium in quiescent cells. Microtubule-associated proteins (MAPs) govern assembly, maintenance, and remodeling of diverse microtubule arrays. While a set of conserved MAPs are only active during cell division, an emerging group of MAPs acts as dual regulators in dividing and nondividing cells. Here, we elucidated the nonciliary functions and molecular mechanism of action of the ciliopathy-linked protein CCDC66, which we previously characterized as a regulator of ciliogenesis in quiescent cells. We showed that CCDC66 dynamically localizes to the centrosomes, the bipolar spindle, the spindle midzone, the central spindle, and the midbody in dividing cells and interacts with the core machinery of centrosome maturation and MAPs involved in cell division. Loss-of-function experiments revealed its functions during mitotic progression and cytokinesis. Specifically, CCDC66 depletion resulted in defective spindle assembly and orientation, kinetochore fiber stability, chromosome alignment in metaphase as well as central spindle and midbody assembly and organization in anaphase and cytokinesis. Notably, CCDC66 regulates mitotic microtubule nucleation via noncentrosomal and centrosomal pathways via recruitment of gamma-tubulin to the centrosomes and the spindle. Additionally, CCDC66 bundles microtubules in vitro and in cells by its C-terminal microtubule-binding domain. Phenotypic rescue experiments showed that the microtubule and centrosome-associated pools of CCDC66 individually or cooperatively mediate its mitotic and cytokinetic functions. Collectively, our findings identify CCDC66 as a multifaceted regulator of the nucleation and organization of the diverse mitotic and cytokinetic microtubule arrays and provide new insight into nonciliary defects that underlie ciliopathies.

The ciliopathy-linked protein CCDC66 is only known for its ciliary functions. This study reveals that CCDC66 also has extensive non-ciliary functions, localizing to the spindle poles, spindle midzone, central spindle and midbody throughout cell division, where it regulates mitosis and cytokinesis by promoting microtubule nucleation and organization.  相似文献   

20.
The central spindle regulates the formation and positioning of the contractile ring and is essential for completion of cytokinesis [1]. Central spindle assembly begins in early anaphase with the bundling of overlapping, antiparallel, nonkinetochore microtubules [2, 3], and these bundles become compacted and mature into the midbody. Prominent components of the central spindle include aurora B kinase and centralspindlin, a complex containing a Kinesin-6 protein (ZEN-4/MKLP1) and a Rho family GAP (CYK-4/MgcRacGAP) that is essential for central spindle assembly [4]. Centralspindlin localization depends on aurora B kinase [5]. Aurora B concentrates in the midbody and persists between daughter cells. Here, we show that in C. elegans embryos and in cultured human cells, respectively, ZEN-4 and MKLP1 are phosphorylated by aurora B in vitro and in vivo on conserved C-terminal serine residues. In C. elegans embryos, a nonphosphorylatable mutant of ZEN-4 localizes properly but does not efficiently support completion of cytokinesis. In mammalian cells, an inhibitor of aurora kinase acutely attenuates phosphorylation of MKLP1. Inhibition of aurora B in late anaphase causes cytokinesis defects without disrupting the central spindle. These data indicate a conserved role for aurora-B-mediated phosphorylation of ZEN-4/MKLP1 in the completion of cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号