首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostate cancer is one of the most common malignancies.The development and progression of prostate cancer are driven by a series of genetic and epigenetic events including gene amplification that activates oncogenes and chromosomal deletion that inactivates tumor suppressor genes.Whereas gene amplification occurs in human prostate cancer,gene deletion is more common,and a large number of chromosomal regions have been identified to have frequent deletion in prostate cancer,suggesting that tumor suppressor inactivation is more common than oncogene activation in prostatic carcinogenesis (Knuutila et al.,1998,1999;Dong,2001).Among the most frequently deleted chromosomal regions in prostate cancer,target genes such as NKX3-1 from 8p21,PTENfrom 10q23 andATBF1 from 16q22 have been identified by different approaches (He et al.,1997;Li et al.,1997;Sun et al.,2005),and deletion of these genes in mouse prostates has been demonstrated to induce and/or promote prostatic carcinogenesis.For example,knockout of Nkx3-1 in mice induces hyperplasia and dysplasia (Bhatia-Gaur et al.,1999;Abdulkadir et al.,2002) and promotes prostatic tumorigenesis (Abate-Shen et al.,2003),while knockout of Pten alone causes prostatic neoplasia (Wang et al.,2003).Therefore,gene deletion plays a causal role in prostatic carcinogenesis (Dong,2001).  相似文献   

2.
3.
4.
Cancer is a heritable disorder of somatic cells. Environment and heredity both contribute to the origin of human cancer. The Eker (Tsc 2 gene mutant) rat model of hereditary renal carcinoma (RC) is an example of a Mendelian dominantly inherited predisposition to a specific cancer in an experimental animal. To the best of our knowledge, this was the first isolation of a Mendelian dominantly predisposing cancer gene in a naturally occurring animal model. Carcinogenesis looks like an opened Japanese fan, because initiated cells growing in several directions will develop into tumors having many gene abnormalities, and this is suggested by the edge of the fan. To search for such genetic alterations, we identified genes (Niban and Erc) that were expressed more abundantly in renal tumors than in the normal kidney.I will review this unique model for the study of multistep renal carcinogenesis and discuss cancer prevention and delay of carcinogenesis.  相似文献   

5.
Elucidation of the molecular events that underlie respiratory epithelium carcinogenesis still remains a largely unresolved issue. Various new therapeutic interventions are in advanced clinical testing or in daily clinical practice based on available preclinical findings. However, the complex molecular interplay that characterizes carcinogenesis requires further investigation to identify the pivotal factors and their interactions that might render the treatment of these malignancies more effective. Insulin-like growth factor-1 (IGF-1) network is a new important signalling cascade in lung carcinogenesis. Here, we integrate updated results that further support the significance of IGF-1 molecular circuitry in respiratory epithelium tumourigenesis, and pose future perspectives regarding its optimal use in the therapeutic field.  相似文献   

6.
Prostatic development is induced by androgens acting via mesenchymal-epithelial interactions. Androgens elicit their morphogenetic effects by acting through androgen receptors (ARs) in urogenital sinus mesenchyme (UGM), which induces prostatic epithelial development. In adulthood reciprocal homeostatic stromal-epithelial interactions maintain functional differentiation and growth-quiescence. Testosterone plus estradiol (T+E2) have been shown to induce prostatic carcinogenesis in animal models. Thus, tissue recombinant studies were undertaken to explore the mechanisms of prostatic carcinogenesis in BPH-1 cells in which ARs and estrogen receptors (ERs) are undetectable. For this purpose, BPH-1 cells were combined with UGM, and the UGM+BPH-1 recombinants were grafted to adult male hosts. Solid branched epithelial cords and ductal structures formed in untreated UGM+BPH-1 recombinants. Growth was modest, and tumors did not develop. UGM+BPH-1 recombinants treated with T+E2 formed invasive carcinomas. BPH-1 cells lack ARs and ERs, whereas rat UGM expresses both of these receptors. These data show that immortalized nontumorigenic human prostatic epithelial cells can undergo hormonal carcinogenesis in response to T+E2 stimulation via paracrine mechanisms and demonstrate that the stromal environment plays an important role in mediating hormonal carcinogenesis. During prostatic carcinogenesis the stroma undergoes progressive loss of smooth muscle with the appearance of carcinoma-associated fibroblasts (CAF). This altered stroma was tested for its ability to promote carcinogenesis of nontumorigenic but immortalized human prostatic epithelial cells (BPH-1). CAF+BPH-1 tissue recombinants formed large carcinomas. In contrast, recombinants composed of normal prostatic stroma+BPH-1 cells exhibited minimal growth. This stroma-induced malignant transformation was associated with additional genetic alterations and changes in gene expression. Thus, alteration in the stromal microenvironment was sufficient to promote malignant transformation of human prostatic epithelial cells.  相似文献   

7.
Cancer being the leading cause of mortality has become a great threat worldwide. Current cancer therapeutics lack specificity and have side effects due to a lack of understanding of the molecular mechanisms and signalling pathways involved in carcinogenesis. In recent years, researchers have been focusing on several signalling pathways to pave the way for novel therapeutics. The PTEN/PI3K/AKT pathway is one of the important pathways involved in cell proliferation and apoptosis, leading to tumour growth. In addition, the PTEN/PI3K/AKT axis has several downstream pathways that could lead to tumour malignancy, metastasis and chemoresistance. On the other hand, microRNAs (miRNAs) are important regulators of various genes leading to disease pathogenesis. Hence studies of the role of miRNAs in regulating the PTEN/PI3K/AKT axis could lead to the development of novel therapeutics for cancer. Thus, in this review, we have focused on various miRNAs involved in the carcinogenesis of various cancer via the PTEN/PI3K/AKT axis.  相似文献   

8.
Pancreatic cancer (PC) has a high rate of mortality and a poorly understood mechanism of progression. Investigation of the molecular mechanism of PC and exploration of the specific markers for early diagnosis and specific targets of therapy are key points to prevent and treat PC effectively and to improve their prognosis. In our study, expression profiles experiment of para‐carcinoma, carcinoma and relapse human PC was performed using Agilent human whole genomic oligonucleotide microarrays with 45 000 probes. Differentially expressed genes related with PC were screened and analysed further by Gene Ontology term analysis and Kyoto encyclopaedia of genes and genomes pathway analysis. Our results showed that there were 3853 differentially expressed genes associated with pancreatic carcinogenesis and relapse. In addition, our study found that PC was related to the Jak–STAT signalling pathway, PPAR signalling pathway and Calcium signalling pathway, indicating their potential roles in pancreatic carcinogenesis and progress. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Genomic studies have revealed that breast cancer consists of a complex biological process with patient-specific genetic variations, revealing the need for individualized cancer diagnostic testing and selection of patient-specific optimal therapies. One of the bottlenecks in translation of genomic breakthroughs to the clinic is the lack of functional genomic assays that have high clinical translatability. Anchorage-independent three-dimensional (3D) growth assays are considered to be the gold-standard for chemosensitivity testing, and leads identified with these assays have high probability of clinical success. The Cancer BioChip System (CBCS) allows for the simultaneous, quantitative, and real time evaluation of multitudes of anchorage-independent breast cancer cell growth inhibitors. We employed a Test Cancer BioChip that contains silencing RNAs (siRNAs) targeting cancer-related genes to identify 3D-specific effectors of breast cancer cell growth. We compared the effect of these siRNAs on colony growth of the hormone receptor positive (MCF7) and Human Epidermal Growth Factor Receptor 2/c- Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2/c-erb-b2) positive (SK-BR-3) cells on the Test Cancer BioChip. Our results confirmed cell-specific inhibition of MCF7 and SK-BR-3 colony formation by estrogen receptor α (ESR1) and (ERBB2) siRNA, respectively. Both cell lines were also suppressed by Phosphoinositide-3-kinase Catalytic, alpha Polypeptide (PIK3CA) siRNA. Interestingly, we have observed responses to siRNA that are unique to this 3D setting. For example, ß-actin (ACTB) siRNA suppressed colony growth in both cell types while Cathepsin L2 (CTSL2) siRNA caused opposite effects. These results further validate the importance of the CBCS as a tool for the identification of clinically relevant breast cancer targets.  相似文献   

11.

Background  

Cancer of the prostate is influenced by both genetic predisposition and environmental factors. The identification of genes capable of modulating cancer development has the potential to unravel disease heterogeneity and aid diagnostic and prevention strategies. To this end, mouse models have been developed to isolate the influences of individual genetic lesions in the context of consistent genotypes and environmental exposures. However, the normal prostatic phenotypic variability dictated by a genetic background that is potentially capable of influencing the process of carcinogenesis has not been established.  相似文献   

12.
《Epigenetics》2013,8(4):193-198
Colorectal Cancer (CRC) is the commonest cancer in non-smokers posing a significant health burden in the UK. Observational studies lend support to the impact of environmental factors especially diet on colorectal carcinogenesis. Significant advances have been made in understanding the biology of CRC carcinogenesis in particular epigenetic modifications such as DNA methylation. DNA methylation is thought to occur at least as commonly as inactivation of tumour suppressor genes. In fact compared with other human cancers, promoter gene methylation occurs most commonly within the gastrointestinal tract. Emerging data suggest the direct influence of certain micronutrients for example folic acid, selenium as well as interaction with toxins such as alcohol on DNA methylation. Such interactions are likely to have a mechanistic impact on CRC carcinogenesis through the methylation pathway but also, may offer possible therapeutic potential as nutraceuticals.  相似文献   

13.
The development and maintenance of the prostate are dependent upon a complex series of interactions occurring between the epithelial and stromal tissues (Hayward and Cunha [2000]: Radiol. Clin. N. Am. 38:1-14). During the process of prostatic carcinogenesis, there are progressive changes in the interactions of the nascent tumor with its surrounding stroma and extracellular matrix. These include the development of a reactive stromal phenotype and the possible promotion, by stromal cells, of epithelial proliferation and loss of differentiated function (Hayward et al. [1996]: Ann. N. Y. Acad. Sci. 784:50-62; Grossfeld et al. [1998]: Endocr. Related Cancer 5:253-270; Rowley [1998]: Cancer Metastasis Rev. 17:411-419; Tuxhorn et al. [2002]: Clin. Cancer Res. 8:2912-2923). Many molecules play an as yet poorly defined role in establishing and maintaining a growth quiescent glandular structure in the adult. Peroxisome proliferator-activated receptor gamma (PPARgamma) is a candidate regulator of prostatic epithelial differentiation and may play a role in restricting epithelial proliferation. PPARgamma agonists are relatively non-toxic and have been used with limited success to treat some prostate cancer patients. We would propose that a more complete understanding of PPARgamma biology, particularly in the context of appropriate stromal-epithelial and host-tumor interactions would allow for the selection of patients most likely to benefit from this line of therapy. In particular, it seems reasonable to suggest that the patients most likely to benefit may be those with relatively indolent low stage disease for whom this line of therapy could be a useful additive to watchful waiting.  相似文献   

14.
15.
Genome-wide profiling of gene amplification and deletion in cancer   总被引:3,自引:0,他引:3  
Kashiwagi H  Uchida K 《Human cell》2000,13(3):135-141
Accumulations of genetic changes in somatic cells induce phenotypic transformations leading to cancer. Among these genetic changes, gene amplification and deletion are most frequently observed in several kinds of cancers. Amplification of oncogene and/or deletion of tumor suppressor gene, together with dysfunction of the gene by point mutation, are the main causes of cancer. Genome-wide analysis of amplification and deletion of genes in cancers is basic to resolving the mechanisms of carcinogenesis. Comparative genomic hybridization (CGH) developed in 1992 has been utilized to identify DNA copy number abnormalities in various kind of cancers and several reports have shown its usefulness in screening of the genes involved in carcinogenesis, and also in the identification of prognostic factors in cancer. We have shown that 1q23 gain is associated with neuroblastomas that are resistant to aggressive treatment, and have poor prognosis, and 1q and 13q gains are possibly related to drug resistance in ovarian cancers. Recently, the "rough draft" of the human genome was reported and we are ready to utilize the vast information on genomic sequences in cancer research. Moreover, microarray technology enables us to analyze more than ten thousand genes at a time and revealed genetic abnormalities in cancers at a genome-wide level. By combination of microarray and CGH, a powerful screening method for oncogenes and tumor suppressor genes in cancers, called array-CGH, has been developed by several groups. In this article, we overview these genome-wide analytical methods, CGH and array-CGH, and discuss their potential in molecular characterization of cancers.  相似文献   

16.
Genome-wide association studies in cancer have already identified over 150 regions associated with two dozen specific cancers. Already, a handful of multi-cancer susceptibility regions have been uncovered, providing new insights into perhaps common mechanisms of carcinogenesis. For each new susceptibility allele, investigators now face the arduous task of interrogating each region beginning with fine mapping prior to pursuing the biological basis for the direct association of one or more variants. It appears that there may be a significant number of common alleles that contribute to the heritability of a specific cancer. Since each region confers a small contribution to the risk for cancer, it is daunting to consider any single nucleotide polymorphism (SNP) as a clinical test. Since the complex genomic architecture of each cancer differs, additional genotyping and sequence analysis will be required to comprehensively catalog susceptibility alleles followed by the formidable task of understanding the interactions between genetic regions as well as the environment. It will be critical to assess the applicability of genetic tests in specific clinical settings, such as when to perform screening tests with calculable risks (e.g., biopsies or chemoprevention), before incorporating SNPs into clinical practice. To advance the current genomic observations to the clinical venue, new studies will need to be designed to validate the utility of known genetic variants in assessing risk for cancer as well as its outcomes.  相似文献   

17.
Previous studies have suggested that increased body mass is associated with an increased risk of prostatic cancer, but these studies have been limited by the fact that they were based on a few simple measurements such as height and weight. Similar results were found in a prospective study of the incidence of prostatic cancer in a cohort of Japanese men born in 1900-19 and living in Hawaii. Further evaluation of the extensive anthropomorphic measurements made in this cohort suggested that the association between measures of body mass and prostatic cancer might be accounted for more by lean tissue than by fat tissue. There was a significant positive association of the risk of prostatic cancer with area of muscle in the arm but not with area of fat in the arm. Further research is needed on the biological mechanisms of carcinogenesis that may be related to both lean and fat tissue and the development of prostatic cancer.  相似文献   

18.
High-grade prostatic intraepithelial neoplasia is considered the most likely precursor of prostatic carcinoma. The only method of detection is biopsy; prostatic intraepithelial neoplasia (PIN) does not significantly elevate serum prostate-specific antigen concentration and cannot be detected by ultra-sonography. The incidence of PIN in prostate biopsies averages 9% (range, 4%-16%), representing 115,000 new cases of PIN diagnosed each year in United States. PIN has a high predictive value as a marker for adenocarcinoma, and its identification warrants repeated biopsy for concurrent or subsequent invasive carcinoma. Carcinoma will develop in most patients with PIN within 10 years. PIN is associated with progressive abnormalities of phenotype and genotype that are intermediate between normal prostatic epithelium and cancer, indicating impairment of cell differentiation and regulatory control with advancing stages of prostatic carcinogenesis. Androgen deprivation therapy decreases the prevalence and extent of PIN, suggesting that this form of treatment may play a role in chemoprevention.  相似文献   

19.
The prostatic membrane antigen (PSMA) is a protein that is expressed in the prostatic epithelium. We studied the expression of PSMA in a series of 55 patients with different stages of prostate cancer and we compared the PSMA staining in prostate cancer cells, in high-grade prostatic intraepithelial neoplasia (PIN) and in histologically benign prostatic epithelium for the same specimen. For this purpose archival paraffin-embedded specimens were studied by immunohistochemistry with a monoclonal antibody 7E11-C5.3 against PSMA using the streptavidin-biotin method. The mean percentage of PSMA immunoreactivity was 56.67% in prostate cancer (CaP) cells, and 48.6% in PIN cells, which was significantly higher than benign-appearing prostatic epithelium (5.72%) (for each pair, p<0.001). PSMA expression was greater in CaP with a higher Gleason score (p=0.01), but no relationship was found with serum PSA value. We conclude that PSMA overexpression is detected in high-grade PIN and is associated with a higher Gleason score of prostate cancer. It is a potential marker for studying carcinogenesis and progression of prostate cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号