首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TRIM5α is a restriction factor that limits infection of human cells by so-called N- but not B- or NB-tropic strains of murine leukemia virus (MLV). Here, we performed a mutation-based functional analysis of TRIM5α-mediated MLV restriction. Our results reveal that changes at tyrosine336 of human TRIM5α, within the variable region 1 of its C-terminal PRYSPRY domain, can expand its activity to B-MLV and to the NB-tropic Moloney MLV. Conversely, we demonstrate that the escape of MLV from restriction by wild-type or mutant forms of huTRIM5α can be achieved through interdependent changes at positions 82, 109, 110, and 117 of the viral capsid. Together, our results support a model in which TRIM5α-mediated retroviral restriction results from the direct binding of the antiviral PRYSPRY domain to the viral capsid, and can be prevented by interferences exerted by critical residues on either one of these two partners.  相似文献   

2.
3.
4.
The TRIM5alpha (tripartite motif 5alpha protein) has been linked to the cross-species restriction in human immunodeficiency virus type 1 (HIV-1) infection of non-human cells, but the mechanism by which this occurs remains to be fully elucidated. Here we demonstrate that the capsid (CA) protein of HIV-1 is more rapidly degraded in cells expressing monkey TRIM5alpha than in cells expressing human TRIM5alpha. Other proteins encoded by Gag and Pol are not subject to TRIM5alpha-mediated accelerated degradation. The accelerated CA degradation by TRIM5alpha apparently occurs via a nonproteosomal pathway. TRIM5alpha selectively accelerates degradation of the CA population, which reached the cytosol of restrictive cells, but not the CA population, which ended into the vesicular compartment. Given that cytosolic CA represents "productively" entered cores, whereas vesicular CA represents "nonproductively" entered cores, our findings suggest that TRIM5alpha interrupts the infectious pathway of HIV-1 by acting on the incoming cytosolic CA. The mode of viral entry does not influence the accelerated degradation of cytosolic CA by TRIM5alpha. Thus, this study reveals a correlation between TRIM5alpha-mediated HIV-1 restriction and a selective degradation of cytosolic CA normally associated with productive viral entry.  相似文献   

5.
Mammalian cells have developed diverse strategies to restrict retroviral infection. Retroviruses have therefore evolved to counteract such restriction factors, in order to colonize their hosts. Tripartite motif-containing 5 isoform-alpha (TRIM5alpha) protein from rhesus monkey (TRIM5alpharh) restricts human immunodeficiency virus type 1 (HIV-1) infection at a postentry, preintegration stage in the viral life cycle, by recognizing the incoming capsid and promoting its premature disassembly. TRIM5alpha comprises an RBCC (RING, B-box 2 and coiled-coil motifs) domain and a B30.2(SPRY) domain. Sequences in the B30.2(SPRY) domain dictate the potency and specificity of the restriction. As TRIM5alpharh targets incoming mature HIV-1 capsid, but not precursor Gag, it was assumed that TRIM5alpharh did not affect HIV-1 production. Here we provide evidence that TRIM5alpharh, but not its human ortholog (TRIM5alphahu), blocks HIV-1 production through rapid degradation of HIV-1 Gag polyproteins. The specificity for this restriction is determined by sequences in the RBCC domain. Our observations suggest that TRIM5alpharh interacts with HIV-1 Gag during or before Gag assembly through a mechanism distinct from the well-characterized postentry restriction. This finding demonstrates a cellular factor blocking HIV-1 production by actively degrading a viral protein. Further understanding of this previously unknown restriction mechanism may reveal new targets for future anti-HIV-1 therapy.  相似文献   

6.
An intact B-box 2 domain is essential for the antiretroviral activity of TRIM5alpha. We modeled the structure of the B-box 2 domain of TRIM5alpha based on the existing three-dimensional structure of the B-box 2 domain of human TRIM29. Using this model, we altered the residues predicted to be exposed on the surface of this globular structure. Most of the alanine substitutions in these residues exerted little effect on the antiretroviral activity of human TRIM5alphahu or rhesus monkey TRIM5alpharh. However, alteration of arginine 119 of TRIM5alphahu or the corresponding arginine 121 of TRIM5alpharh diminished the abilities of the proteins to restrict retroviral infection without affecting trimerization or recognition of the viral capsid. The abilities of these functionally defective TRIM5alpha proteins to accelerate the uncoating of the targeted retroviral capsid were abolished. Removal of the positively charged side chain from B-box 2 arginines 119/120/121 resulted in diminished proteasome-independent turnover of TRIM5alpha and the related restriction factor TRIMCyp. However, testing of an array of mutants revealed that the rapid turnover and retroviral restriction functions of this B-box 2 region are separable.  相似文献   

7.
The host restriction factors TRIM5α and TRIMCyp potently inhibit retrovirus infection by binding to the incoming retrovirus capsid. TRIM5 proteins are dimeric, and their association with the viral capsid appears to be enhanced by avidity effects owing to formation of higher-order oligomeric complexes. We examined the stoichiometric requirement for TRIM5 functional recognition by quantifying the efficiencies of restriction of HIV-1 and murine leukemia virus (MLV) particles containing various proportions of restriction-sensitive and -insensitive CA subunits. Both TRIMCyp and TRIM5α inhibited infection of retrovirus particles containing as little as 25% of the restriction-sensitive CA protein. Accordingly, we also observed efficient binding of TRIMCyp in vitro to capsid assemblies containing as little as one-fourth wild-type CA protein. Paradoxically, the ability of HIV-1 particles to abrogate TRIMCyp restriction in trans was more strongly dependent on the fraction of wild-type CA than was restriction of infection. Collectively, our results indicate that TRIM5 restriction factors bind to retroviral capsids in a highly cooperative manner and suggest that TRIM5 can engage a capsid lattice containing a minimum of three or fewer recognizable subunits per hexamer. Our study supports a model in which localized binding of TRIM5 to the viral capsid nucleates rapid polymerization of a TRIM5 lattice on the capsid surface.  相似文献   

8.
9.
Recent studies have revealed the contribution of TRIM5alpha to retrovirus restriction in cells from a variety of primate species. TRIM5alpha consists of a tripartite motif (the RBCC domain) followed by a B30.2 domain. The B30.2 domain is thought to be involved in determination of restriction specificity and contains three variable regions. To investigate the relationship between the phylogeny of primate TRIM5alpha and retrovirus restriction specificity, a series of chimeric TRIM5alpha consisting of the human RBCC domain followed by the B30.2 domain from various primates was constructed. These constructs showed restriction profiles largely consistent with the origin of the B30.2 domain. Restriction specificity was further investigated with a variety of TRIM5alphas containing mixed or mutated B30.2 domains. This study revealed the importance of all three variable regions for determining restriction specificity. Based on the molecular structures of other PRYSPRY domains solved recently, a model for the molecular structure of the B30.2 domain of TRIM5alpha was developed. The model revealed that the variable regions of the B30.2 domain are present as loops located on one side of the B30.2 core structure. It is hypothesized that these three loops form a binding surface for virus and that evolutionary changes in any one of the loops can alter restriction specificity.  相似文献   

10.
11.
12.
Human TRIM5alpha (TRIM5alpha(hu)) potently restricts N-tropic (N-MLV), but not B-tropic, murine leukemia virus in a manner dependent upon residue 110 of the viral capsid. Rhesus monkey TRIM5alpha (TRIM5alpha(rh)) inhibits N-MLV only weakly. The study of human-monkey TRIM5alpha chimerae revealed that both the v1 and v3 variable regions of the B30.2/SPRY domain contain potency determinants for N-MLV restriction. These variable regions are predicted to be surface-exposed elements on one face of the B30.2 domain. Acidic residues in v3 complement basic residue 110 of the N-MLV capsid. The results support recognition of the retroviral capsid by the TRIM5alpha B30.2 domain.  相似文献   

13.
14.
Li Y  Li X  Stremlau M  Lee M  Sodroski J 《Journal of virology》2006,80(14):6738-6744
Human TRIM5alpha (TRIM5alpha(hu)) only modestly inhibits human immunodeficiency virus type 1 (HIV-1) and does not inhibit simian immunodeficiency virus (SIV(mac)). Alteration of arginine 332 in the TRIM5alpha(hu) B30.2 domain to proline, the residue found in rhesus monkey TRIM5alpha, has been shown to create a potent restricting factor for both HIV-1 and SIV(mac.) Here we demonstrate that the potentiation of HIV-1 inhibition results from the removal of a positively charged residue at position 332 of TRIM5alpha(hu.) The increase in restricting activity correlated with an increase in the ability of TRIM5alpha(hu) mutants lacking arginine 332 to bind HIV-1 capsid complexes. A change in the cyclophilin A-binding loop of the HIV-1 capsid decreased TRIM5alpha(hu) R332P binding and allowed escape from restriction. The ability of TRIM5alpha(hu) to restrict SIV(mac) could be disrupted by the presence of any charged residue at position 332. Thus, charged residues in the v1 region of the TRIM5alpha(hu) B30.2 domain can modulate capsid binding and restriction potency. Therapeutic strategies designed to neutralize arginine 332 of TRIM5alpha(hu) might potentiate the innate resistance of human cells to HIV-1 infection.  相似文献   

15.
16.
17.
Sakuma R  Mael AA  Ikeda Y 《Journal of virology》2007,81(18):10201-10206
Dominant, constitutively expressed antiretroviral factors, including TRIM5alpha and APOBEC3 proteins, are distinguished from the conventional innate immune systems and are classified as intrinsic immunity factors. Here, we demonstrate that interferon alpha (IFN-alpha) treatment upregulates TRIM5alpha mRNA in rhesus monkey cells, which correlates with the enhanced TRIM5alpha-mediated pre- and postintegration blocks of human immunodeficiency virus replication. In human cells, IFN-alpha increases the levels of TRIM5alpha mRNA, resulting in enhanced antiviral activity against N-tropic murine leukemia virus infection. These observations indicate that the TRIM5alpha-mediated antiviral effects can be orchestrated by the conventional innate immune response. It is conceivable that TRIM5alpha plays an essential role in controlling both the initial retroviral exposure and the subsequent viral dissemination in vivo.  相似文献   

18.
19.
Schaller T  Hué S  Towers GJ 《Journal of virology》2007,81(21):11713-11721
The recent identification of antiretroviral tripartite motif-bearing restriction factors that protect against retroviral infection has revealed a novel branch of innate immunity. The factors target the retroviral capsid and inhibit infectivity soon after the capsid has entered the cytoplasm by an incompletely characterized mechanism. Restriction is species specific. For example, TRIM5alpha from Old World monkeys, but not humans, restricts human immunodeficiency virus type 1 infection. Here, we identify an antiviral TRIM5 molecule in rabbits that is closely related to antiviral TRIM5 of both primates and cattle. We demonstrate that the rabbit TRIM5 protein is active against divergent retroviruses and leads to a strong block to viral DNA synthesis and infectivity. Furthermore, we show that antiviral activity is directed against the viral capsid and that human TRIM5 proteins are dominant negative to restriction in rabbit cells. We propose that the sequence and restriction characteristics conserved between restriction factors from primates, cattle, and rabbits indicate that these factors have evolved from a common ancestor with antiretroviral properties.  相似文献   

20.
Saenz DT  Teo W  Olsen JC  Poeschla EM 《Journal of virology》2005,79(24):15175-15188
The Ref1 and Lv1 postentry restrictions in human and monkey cells have been analyzed for lentiviruses in the primate and ungulate groups, but no data exist for the third (feline) group. We compared feline immunodeficiency virus (FIV) to other restricted (human immunodeficiency virus type 1 [HIV-1], equine infectious anemia virus [EIAV]) and unrestricted (NB-tropic murine leukemia virus [NB-MLV]) retroviruses across wide ranges of viral inputs in cells from multiple primate and nonprimate species. We also characterized restrictions conferred to permissive feline and canine cells engineered to express rhesus and human TRIM5alpha proteins and performed RNA interference (RNAi) against endogenous TRIM5alpha. We find that expression of rhesus or human TRIM5alpha proteins in feline cells restricts FIV, impairing pseudotyped vector transduction and viral replication, but rhesus TRIM5alpha is more restricting than human TRIM5alpha. Notably, however, canine cells did not support restriction by human TRIM5alpha and supported minimal restriction by rhesus TRIM5alpha, suggesting that these proteins may not function autonomously or that a canine factor interferes. Stable RNAi knockdown of endogenous rhesus TRIM5alpha resulted in marked increases in FIV and HIV-1 infectivities while having no effect on NB-MLV. A panel of nonprimate cell lines varied widely in susceptibility to lentiviral vector transduction, but normalized FIV and HIV-1 vectors varied concordantly. In contrast, in human and monkey cells, relative restriction of FIV compared to HIV-1 varied from none to substantial, with the greatest relative infectivity deficit for FIV vectors observed in human T-cell lines. Endogenous and introduced TRIM5alpha restrictions of FIV could be titrated by coinfections with FIV, HIV-1, or EIAV virus-like particles. Arsenic trioxide had complex and TRIM5alpha-independent enhancing effects on lentiviral but not NB-MLV infection. Implications for human gene therapy are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号