首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesteryl ester hydroperoxide (CE-OOH) and phosphatidylcholine hydroperoxide (PC-OOH) are the major primary oxidation products of lipoproteins. CE-OOH is present in human and rat plasmas while PC-OOH is undetectable. This is likely due to the enzymatic (plasma glutathione peroxidase) and the nonenzymatic (apolipoproteins A and B-100) reducing activities of PC-OOH in plasma, and to the enzymatic conversion of PC-OOH to CE-OOH by lecithin:cholesterol acyltransferase in high density lipoproteins. The regioisomeric distribution of CE-O(O)H in human plasma indicates that free radical-mediated chain oxidation is an ongoing process, even in healthy young individuals.  相似文献   

2.
The levels of lipid hydroperoxides and antioxidants in plasma samples from Nagase analbuminemic rats (NAR) and control Sprague-Dawley rats (SDR) were measured in comparison with those from normal human subjects. Cholesteryl ester hydroperoxide (CE-OOH) was detected, but phosphatidylcholine hydroperoxide was not. The levels of CE-OOH and the ratios of CE-OOH/CE were found to increase significantly in the order of human < SDR < NAR, suggesting that oxidative stress increases in the same order. NAR have a significantly lower level of ascorbate and lower ratio of ubiquinol/ubiquinone concentrations than SDR. This also suggests that NAR are subject to more oxidative stress than SDR, since ascorbate and ubiquinol are the most effective plasma antioxidants against oxygen radicals.  相似文献   

3.
We have previously isolated two proteins which can reduce phosphatidylcholine hydroperoxide (PC-OOH) from human blood plasma and identified one of the proteins as apolipoprotein A-I (Mashima, R. , et al. (1998) J. Lipid Res. 39, 1133-1140). In the present study we have identified the other protein as apolipoprotein B-100 (apo B-100) by amino acid sequence analysis of its tryptic peptides. The reactivity of lipid hydroperoxides with apo B-100 decreased in the order of PC-OOH > linoleic acid hydroperoxide > cholesteryl ester hydroperoxide under our experimental conditions. Pretreatment of apo B-100 with chloramine T, an oxidant of methionine, diminished the PC-OOH-reducing activity, indicating that some of 78 methionines are responsible for the reduction of PC-OOH. Despite the presence of 6 methionines in albumin, albumin was inactive to reduce PC-OOH. Free methionine was also inactive. These data suggest that the accessibility and binding of lipid hydroperoxides to the protein methionine residues are crucial for reduction of lipid hydroperoxides.  相似文献   

4.
Lipoxygenase-dependent low-density lipoprotein (LDL) oxidation is believed to be involved in atherogenesis. Inhibition of lipoxygenase-induced lipid peroxidation might, therefore, be an important mode to suppress the development of atherosclerosis. Because dietary antioxidants inhibit LDL oxidation in vitro and their intake is inversely associated with coronary heart diseases, we compared the inhibitory effect of three typical flavonoids-quercetin, epicatechin, and flavone-with alpha-tocopherol and ascorbic acid against human LDL oxidation catalyzed by mammalian 15-lipoxygenase. The oxidative modification of LDL was monitored by measurement of cholesteryl ester hydroperoxide (CE-OOH) formation and consumption of antioxidants by using HLPC. Quercetin and epicatechin were the strongest inhibitors of LDL oxidation catalyzed by 15-lipoxygenase; ascorbic acid was an effective inhibitor in the first 3 h of oxidation; and fivefold alpha-tocopherol-enriched LDL showed a partial inhibition of CE-OOH formation only after 4-6 h of incubation. Flavone had no effect. Quercetin, ascorbic acid, and alpha-tocopherol were consumed in the first 3 h of incubation. Consumption of LDL alpha-tocopherol was partially inhibited by ascorbic acid and quercetin, whereas epicatechin and flavone were without effect. These results emphasize the inhibitory effect of the flavonoids quercetin and epicatechin on 15-lipoxygenase-mediated LDL lipid peroxidation. At similar concentrations, they are stronger antioxidants than ascorbic acid, alpha-tocopherol, and flavone.  相似文献   

5.
Lipid peroxidation and lipid-derived oxidized products have been implicated in the pathogenesis of a variety of human diseases. To clarify the role of oxidative stress in essential hypertension and hypercholesterolemia the in vitro oxidative susceptibility of LDL, the antioxidant status and the lipid peroxide content of blood plasma were examined in hypercholesterolemic (HC), hypertensive (H), hypercholesterolemic/hypertensive (HH) and normolipidemic/normotensive subjects (N). Plasma ascorbate and lipid-soluble antioxidants were lower, while LDL oxidizability, CE-OOH and TL-OOH were higher in H, HC, and HH groups than in the N group. No difference was observed among groups for PL-OOH and isoprostanes. In summary, the results show that: 1) lipid- and water-soluble antioxidants are lower in hypercholesterolemic and hypertensive patients as compared to normal subjects, whereas the lipid peroxide content and the LDL susceptibility to oxidation were higher; 2) total cholesterol, LDL-cholesterol, apoB and CE-OOH were negatively correlated with the content of a-tocopherol; 3) there was a positive correlation between the content of lipid-soluble antioxidants and the resistance of LDL to oxidation; and 4) CE-OOH and TL-OOH were positively correlated with total cholesterol and LDL-cholesterol.  相似文献   

6.
Time-course of oxidation of lipids in human cerebrospinal fluid in vitro   总被引:3,自引:0,他引:3  
Oxidative mechanisms play an important role in the pathogenesis of Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases. To assess whether the oxidation of brain lipoproteins plays a role in the development of these pathologies, we investigated whether the lipoproteins of human cerebrospinal fluid (CSF) are susceptible to oxidative modification in vitro. We studied oxidation time-course for up to 100 h of human CSF in the absence (autooxidation) or presence of exogenous oxidants. Autooxidation of diluted CSF was found to result in a slow accumulation of lipid peroxidation products. The time-course of lipid hydroperoxide accumulation revealed three consecutive phases, lag-phase, propagation phase and plateau phase. Qualitatively similar time-course has been typically found in human plasma and plasma lipoproteins. Autooxidation of CSF was accelerated by adding exogenous oxidants, delayed by adding antioxidants and completely inhibited by adding a chelator of transition metal ions. Autooxidation of CSF also resulted in the consumption of endogenous ascorbate, alpha-tocopherol, urate and linoleic and arachidonic acids. Taking into account that (i) lipid peroxidation products measured in our study are known to be derived from fatty acids, and (ii) lipophilic antioxidants and fatty acids present in CSF are likely to be located in CSF lipoproteins, we conclude that lipoproteins of human CSF are modified in vitro during its autooxidation. This autooxidation appears to be catalyzed by transition metal ions, such as Cu(II) and Fe(III), which are present in native CSF. These data suggest that the oxidation of CSF lipoproteins might occur in vivo and play a role in the pathogenesis of neurodegenerative diseases.  相似文献   

7.
Oxidative mechanisms play an important role in the pathogenesis of Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases. To assess whether the oxidation of brain lipoproteins plays a role in the development of these pathologies, we investigated whether the lipoproteins of human cerebrospinal fluid (CSF) are susceptible to oxidative modification in vitro. We studied oxidation time-course for up to 100 h of human CSF in the absence (autooxidation) or presence of exogenous oxidants. Autooxidation of diluted CSF was found to result in a slow accumulation of lipid peroxidation products. The time-course of lipid hydroperoxide accumulation revealed three consecutive phases, lag-phase, propagation phase and plateau phase. Qualitatively similar time-course has been typically found in human plasma and plasma lipoproteins. Autooxidation of CSF was accelerated by adding exogenous oxidants, delayed by adding antioxidants and completely inhibited by adding a chelator of transition metal ions. Autooxidation of CSF also resulted in the consumption of endogenous ascorbate, α-tocopherol, urate and linoleic and arachidonic acids. Taking into account that (i) lipid peroxidation products measured in our study are known to be derived from fatty acids, and (ii) lipophilic antioxidants and fatty acids present in CSF are likely to be located in CSF lipoproteins, we conclude that lipoproteins of human CSF are modified in vitro during its autooxidation. This autooxidation appears to be catalyzed by transition metal ions, such as Cu(II) and Fe(III), which are present in native CSF. These data suggest that the oxidation of CSF lipoproteins might occur in vivo and play a role in the pathogenesis of neurodegenerative diseases.  相似文献   

8.
Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme involved in lipoprotein metabolism. It mediates the transesterification of free cholesterol to cholesteryl ester in an apoprotein A-I-dependent process. We have isolated purified LCAT from human plasma using anion-exchange chromatography and characterized the extracted LCAT in terms of its molecular weight, molar absorption coefficient, and enzymatic activity. The participation of LCAT in the oxidation of very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) was examined by supplementing lipoproteins with exogenous LCAT over a range of protein concentrations. LCAT-depleted lipoproteins were also prepared and their oxidation kinetics examined. Our results provide evidence for a dual role for LCAT in lipoprotein oxidation, whereby it acts in a dose-responsive manner as a potent pro-oxidant during VLDL oxidation, but as an antioxidant during LDL oxidation. We believe this novel pro-oxidant effect may be attributable to the LCAT-mediated formation of oxidized cholesteryl ester in VLDL, whereas the antioxidant effect is similar to that of chain-breaking antioxidants. Thus, we have demonstrated that the high-density lipoprotein-associated enzyme LCAT may have a significant role to play in lipoprotein modification and hence atherogenesis.  相似文献   

9.
Lipoxygenase is suggested to be involved in the early event of atherosclerosis by inducing plasma low-density lipoprotein (LDL) oxidation in the subendothelial space of the arterial wall. Since flavonoids such as quercetin are recognized as lipoxygenase inhibitors and they occur mainly in the glycoside form, we assessed the effect of quercetin and its glycosides (quercetin 3-O-β-glucopyranoside, Q3G; quercetin 4′-O-β-glucopyranoside, Q4′G; quercetin 7-O-β-glucopyranoside, Q7G) on rabbit reticulocyte 15-lipoxygenase (15-Lox)-induced human LDL lipid peroxidation and compared it with the inhibition obtained by ascorbic acid and α-tocopherol, the main water-soluble and lipid-soluble antioxidants in blood plasma, respectively. Quercetin inhibited the formation of cholesteryl ester hydroperoxides (CE-OOH) and endogenous α-tocopherol consumption effectively throughout the incubation period of 6 h. Ascorbic acid exhibited an effective inhibition only in the initial stage and LDL preloaded with fivefold α-tocopherol did not affect the formation of CE-OOH compared with the native LDL. CE-OOH formation was inhibited by both quercetin and quercetin monoglucosides in a concentration-dependent manner. Quercetin, Q3G, and Q7G exhibited a higher inhibitory effect than Q4′G (IC50: 0.3–0.5 μM for quercetin, Q3G, and Q7G and 1.2 μM for Q4′G). While endogenous α-tocopherol was completely depleted after 2 h of LDL oxidation, quercetin, Q7G, and Q3G prevented the consumption of α-tocopherol. Quercetin and its monoglucosides were also exhausted during the LDL oxidation. These results indicate that quercetin glycosides as well as its aglycone are capable of inhibiting lipoxygenase-induced LDL oxidation more efficiently than ascorbic acid and α-tocopherol.  相似文献   

10.
To determine the antioxidant activity of dietary quercetin (3,3',4', 5,7-pentahydroxyflavone) in the blood circulation, we measured the inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation of human low-density lipoprotein (LDL). Conjugated quercetin metabolites were prepared from the plasma of rat 1 h after oral administration of quercetin aglycone (40 micromol/rat). The rate of cholesteryl ester hydroperoxide (CE-OOH) accumulation and the rate of alpha-tocopherol consumption in mixtures of LDL solution (0.4 mg/ml) with equal volumes of this preparation were slower than the rates in mixtures of LDL with preparations from control rats. The concentrations of CE-OOH after 2 h oxidation in the mixtures of LDL with preparations of conjugated quercetin metabolites were significantly lower than those in the control preparation. It is therefore confirmed that conjugated quercetin metabolites have an inhibitory effect on copper ion-induced lipid peroxidation in human LDL. Quercetin 7-O-beta-glucopyranoside (Q7G) and rhamnetin (3,3',4', 5-tetrahydroxy-7-methoxyflavone) exerted strong inhibition and their effect continued even after complete consumption, similarly to quercetin aglycone. The effect of quercetin 3-O-beta-glucopyranoside (Q3G) did not continue after its complete consumption, indicating that the antioxidant mechanism of quercetin conjugates lacking a free hydroxyl group at the 3-position is different from that of the other quercetin conjugates. The result that 4'-O-beta-glucopyranoside (Q4'G) and isorhamnetin (3,4',5, 7-tetrahydroxy-3'-methoxyflavone) showed little inhibition implies that introduction of a conjugate group to the position of the dihydroxyl group in the B ring markedly decreases the inhibitory effect. The results of azo radical-induced lipid peroxidation of LDL and the measurement of free radical scavenging capacity using stable free radical, 1,1,-diphenyl-2-picrylhydrazyl, demonstrated that the o-dihydroxyl structure in the B ring is required to exert maximum free radical scavenging activity. It is therefore likely that conjugation occurs at least partly in positions other than the B ring during the process of metabolic conversion so that the inhibitory effect of dietary quercetin is retained in blood plasma after absorption.  相似文献   

11.
Presence of phosphatidylcholine hydroperoxide in human plasma   总被引:5,自引:0,他引:5  
A chemiluminescence-high performance liquid chromatography (CL-HPLC) system was newly developed and used for the hydroperoxide-specific determination of phosphatidylcholine hydroperoxide (PCOOH) in human plasma. The method involves separation of phosphatidylcholine derivatives from plasma lipids by normal phase HPLC and subsequent detection of hydroperoxide-dependent chemiluminescence (CL) of PCOOH. CL was produced through luminol oxidation during the reaction of the hydroperoxide and cytochrome c-heme. The high specificity for the hydroperoxide allows the sensitive assaying of a large PCOOH range over a concentration range of 50-2,000 pmol of hydroperoxide-O2. Using this method, the occurrence of PCOOH in normal human plasma was strongly suggested and was confirmed quantitatively.  相似文献   

12.
Prolonged hepatic warm ischemia has been incriminated in oxidative stress after reperfusion. However, the magnitude of oxidative stress during ischemia has been controversial. The aims of the present study were to elucidate whether lipid peroxidation progressed during ischemia and to clarify whether oxidative stress during ischemia aggravated the oxidative damage after reperfusion. Rats were subjected to 30 to 120 min of 70% warm ischemia alone or followed by reperfusion for 60 min. Lipid peroxidation (LPO) was evaluated by amounts of phosphatidylcholine hydroperoxide (PC-OOH) and phosphatidylethanolamine hydroperoxide (PE-OOH) as primary LPO products. Total amounts of malondialdehyde and 4-hydroxy-2-nonenal (MDA + 4-HNE), degraded from hydroperoxides, were also determined. PC-OOH and PE-OOH significantly increased at 60 and 120 min ischemia with concomitant increase of oxidized glutathione. These hydroperoxides did not increase at 60 min reperfusion after 60 min ischemia, whereas they did increase at 60 min reperfusion after 120 min ischemia with deactivation of phospholipid hydroperoxide glutathione peroxidase and superoxide dismutase. The amount of MDA + 4-HNE exhibited similar changes, but the velocity of production dropped with ischemic time longer than 60 min. In conclusion, oxidative stress progressed during ischemia and triggered the oxidative injury after reperfusion. Secondary LPO products are less sensitive, especially during ischemia, which may cause possible underestimation and discrepancy.  相似文献   

13.
Previously [Anal. Biochem., 232 (1995) 163–171], we reported a high-performance liquid chromatography (HPLC) assay method for human plasma lipoproteins using a diethylaminoethyl (DEAE)-glucomannan column, which is not commercially available. In this study, HPLC assay methods for lipoproteins in plasma samples of human and experimental animals, and modified low-density lipoproteins (LDLs) of rabbits have been developed using a commercially available anion-exchange ProtEx-DEAE column. For the assays of plasma lipoproteins, the method includes complete separation of high-density lipoproteins, LDLs and very low-density lipoproteins within 20 min using stepwise elution, and determination by post-column reaction with an enzymatic cholesterol reagent as the total cholesterol (TC) level. Similarly, mild oxidative and artificially oxidised LDLs were separated into their subfractions using stepwise elution, and determined based on the TC level. The methods using the DEAE-glucomannan and ProtEx-DEAE columns were cross-validated. There was an excellent correlation between the two methods. The obtained results reveal that the anion-exchange HPLC method using the ProtEx-DEAE column could be useful for the assays of plasma lipoproteins and modified LDLs.  相似文献   

14.
This study pursued whether singlet oxygen ((1)O2) is generated from phosphatidylcholine hydroperoxide (PCOOH), the oxidized modification product of a major constituent of biomembranes and serum lipoproteins. The (1)O2 formation was detected, by utilizing the oxidation of 2,2,6,6-tetramethyl-4-piperidone (TMPD) by (1)O2 to yield 2,2,6,6-tetramethyl-4-piperidone-1-oxyl (TEMPONE), which generates electron spin resonance (ESR) signals. The TEMPONE signal was detected in human plasma with addition of PCOOH by ESR determination after introducing copper(II). The TEMPONE formation was proportional to the amounts of PCOOH added according to moles of active oxygen. The TEMPONE signal intensity was weakened significantly in the presence of beta-carotene and histidine in a concentration-dependent manner, but was not at all decreased by mannitol, Mn-superoxide dismutase and catalase. In addition, HPLC-chemiluminescence analysis demonstrated that incubation with the PCOOH/Cu(II) combination oxidized cholesterol, a relatively oxidation-resistant component, to the cholesterol hydroperoxide. These results reveal that (1)O2 is generated from PCOOH in contact with copper(II). In conclusion, this in-vitro study provides directly the (1)O2 formation in living organisms following the advancement of peroxidation of constitutive lipids.  相似文献   

15.
A chemiluminescence-high performance liquid chromatography (CL-HPLC) system was developed (Miyazawa, T. et al., Anal. Lett., 20, 915-925, 1987) and applied for the hydroperoxide-specific determination of phosphatidylcholine hydroperoxide (PCOOH) in biological tissues such as human blood plasma (Miyazawa, T. et al., Anal Lett 21:1033-1044, 1988; J. Biochem. 103:744-746; 1988). This system involves separation of phosphatidylcholines from plasma total lipids with normal phase silica gel HPLC and post-column detection of hydroperoxide-dependent chemiluminescence of PCOOH. The chemiluminescence is produced by luminol oxidation during a reaction of hydroperoxide and cytochrome c-heme. The high specificity for hydroperoxide base enables a sensitive assay for a large range of PCOOH, with the detection limit of 10 picomole of hydroperoxide-O2. By use of this assay system, the presence of PCOOH in human blood plasma is confirmed quantitatively. The PCOOH concentration of healthy plasma is in the range below 10 nM to 500 nM, and much higher concentrations (500-9000 nM) of PCOOH are observed in the plasma of unhealthy donors.  相似文献   

16.
The catalytic properties of bovine liver catalase have been investigated in organic solvents. In tetrahydrofuran, dioxane, and acetone (all containing 1% to 3% of water), the enzyme breaks down tert-butyl hydroperoxide several fold faster than in pure water. Furthermore, the rate of catalase-catalyzed production of tert-butanol from tert-butyl hydroperoxide increases more than 400-fold upon transition from aqueous buffer to ethanol as the reaction medium. The mechanistic rationale for this striking effect is that in aqueous buffer the rate-limiting step of the enzymatic process involves the reduction of catalase's compound I by tert-butyl hydroperoxide. In ethanol, and additional step in the reaction scheme becomes available in which ethanol, greatly outcompeting the hydroperoxide, is oxidized by compound I regenerating the free enzyme. In solvents, such as acetonitrile or tetrahydrofuran, which themselves are not oxidizable by compound I, catalase catalyzes the oxidation of numerous primary and secondary alcohols with tert-butyl hydroperoxide to the corresponding aldehydes or ketones. The enzymatic oxidation of some chiral alcohols (2,3-butanediol, citronellol, and menthol) under these conditions occurs enantioselectively. Examination of the enantioselectivity for the oxidation of 2,3-butanediol in a series of organic solvents reveals a considerable solvent dependence. (c) 1995 John Wiley & Sons, Inc.  相似文献   

17.
Jayaraman S  Gantz DL  Gursky O 《Biochemistry》2008,47(12):3875-3882
High-density lipoproteins (HDLs) prevent atherosclerosis by removing cholesterol from macrophages and by providing antioxidants for low-density lipoproteins. Oxidation of HDLs affects their functions via the complex mechanisms that involve multiple protein and lipid modifications. To differentiate between the roles of oxidative modifications in HDL proteins and lipids, we analyzed the effects of selective protein oxidation by hypochlorite (HOCl) on the structure, stability, and remodeling of discoidal HDLs reconstituted from human apolipoproteins (A-I, A-II, or C-I) and phosphatidylcholines. Gel electrophoresis and electron microscopy revealed that, at ambient temperatures, protein oxidation in discoidal complexes promotes their remodeling into larger and smaller particles. Thermal denaturation monitored by far-UV circular dichroism and light scattering in melting and kinetic experiments shows that protein oxidation destabilizes discoidal lipoproteins and accelerates protein unfolding, dissociation, and lipoprotein fusion. This is likely due to the reduced affinity of the protein for lipid resulting from oxidation of Met and aromatic residues in the lipid-binding faces of amphipathic alpha-helices and to apolipoprotein cross-linking into dimers and trimers on the particle surface. We conclude that protein oxidation destabilizes HDL disk assembly and accelerates its remodeling and fusion. This result, which is not limited to model discoidal but also extends to plasma spherical HDL, helps explain the complex effects of oxidation on plasma lipoproteins.  相似文献   

18.
Selective microdetermination of lipid hydroperoxides   总被引:1,自引:0,他引:1  
A sensitive and selective assay for lipid hydroperoxides was developed based upon the activation by hydroperoxides of the cyclooxygenase activity of prostaglandin H synthase. The assay measures hydroperoxides directly by their stimulatory action on the cyclooxygenase and thus differs from the methods used currently which rely on the measurement of secondary products to estimate the amount of hydroperoxide. The present assay of enzymatic response was approximately linear in the range 10 to 150 pmol of added lipid hydroperoxide. This sensitivity for lipid peroxides is about 50-fold greater than that of the thiobarbiturate assay with fluorescence detection. When applied to samples of human plasma, the enzymatic assay indicated that the concentration of lipid hydroperoxides in normal subjects is 0.5 microM, more than 50-fold lower than estimated by the thiobarbiturate assay (30-50 microM). Nevertheless, the circulating concentration of 0.5 microM lipid hydroperoxide approaches that reported to have deleterious effects upon vascular prostacyclin synthase.  相似文献   

19.
Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of 125I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid. We postulate that similar mechanisms may be important in the regulation of LPL activity at the vascular endothelium.  相似文献   

20.
Toxic effects imposed to human erythrocytes by low density lipoproteins carrying phthalocyanines used in photodynamic therapy (PDT) of tumors are described. This study was aimed at evaluating cytotoxic effects induced by reactive species produced locally in photosensitizer-loaded lipoproteins and further transferred to the cells. The experimental set up designed to examine these interactions starts with the loading of human plasma with the photosensitizer, the subsequent rapid purification and dialysis of the LDL fraction and incubation with human erythrocytes. This experimental model was assessed by following leakage of endogenous K+ from cells, electrochemical detection of oxygen, spectroscopic determination of conjugated dienes, phthalocyanine, SH groups and hemoglobin, analysis of fatty acids by gas chromatography and identification of a-tocopherol by HPLC. Photosensitizer-loaded lipoproteins become more susceptible to oxidation, exhibiting shorter lag phases of lipid oxidation, higher rates of oxidation and increased loss of endogenous alpha-tocopherol when challenged with peroxyl radicals and copper, as compared with native lipoproteins from the same plasma sample. Incubation of photosensitized lipoproteins with erythrocytes under light (>560 nm) results in a sigmoidal efflux of K+ followed by hemolysis. The phenolic antioxidant caffeic acid inhibits lipoprotein oxidation induced by peroxyl radicals, either in native or photosensitizer-loaded fractions, delays hemolysis of erythrocytes and partially prevents membrane loss of SH groups in ghosts, but not the efflux of K+. Mechanistically, a chain lipid peroxidation reaction does not participate in the toxic effects to cells but a specific pool of membrane SH groups sensitive to caffeic acid is likely to be involved. This study suggests that an oxidative stress occurring locally in phthalocyanine-loaded low density lipoproteins may further induce cytotoxic effects by targeting specific SH groups at the cell membrane level. The physiological relevance of these findings and the beneficial use of antioxidants are discussed in the context of PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号