首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Glutamine and glutamate transport activities were measuredin isolated luminal and abluminal plasma membrane vesiclesderived from bovine brain endothelial cells. Facilitativesystems for glutamine and glutamate were almost exclusivelylocated in luminal-enriched membranes. The facilitativeglutamine carrier was neither sensitive to2-aminobicyclo(2,2,1)heptane-2-carboxylic acid inhibition nor did itparticipate in accelerated amino acid exchange; it therefore appearedto be distinct from the neutral amino acid transport system L1. TwoNa-dependent glutamine transporters were found in abluminal-enrichedmembranes: systems A and N. System N accounted for ~80% ofNa-dependent glutamine transport at 100 µM. Abluminal-enriched membranes showed Na-dependent glutamate transport activity. The presence of 1) Na-dependent carrierscapable of pumping glutamine and glutamate from brain into endothelialcells, 2) glutaminase withinendothelial cells to hydrolyze glutamine to glutamate and ammonia, and3) facilitative carriers forglutamine and glutamate at the luminal membrane may provide a mechanismfor removing nitrogen and nitrogen-rich amino acids from brain.

  相似文献   

2.
The existence of the blood-brain barrier is due to tight junctions between endothelial cells preventing the passage of liquid and solute material at the capillary level. Substances can thus pass across the blood-brain barrier if they are lipophilic or if they have transport systems in the membranes of endothelial cells. The luminal membrane brings metabolites needed for the brain function, the abluminal one plays an important part in removing substances from brain, this can happen against a concentration gradient and thus needs energy. Ions are transported differently by the 2 membranes. Sodium and chloride have carriers and potassium is transported very actively by the sodium-potassium ATPase of the abluminal membrane. Blood-brain glucose influx is very important and happens by carrier transport at the 2 membranes. Efflux seems to use the same transport system as the influx. Transport of ketone bodies seems to happen only from blood to brain, the carriers being reversibly used for brain-blood transport of pyruvic and lactic acid. Amino-acid transport is very different on the luminal and abluminal membranes. On the luminal membrane there are 2 transport systems, one for basic amino acids, the other one, the L system, for neutral amino-acids. All neutral amino-acids are transported through the abluminal membrane by the L, A and ASC systems. There exists a system of transport for basic amino-acids, and a very active one for acid amino-acids. Some systems for the transport of hormones, vitamins and for some peptides exist also at the blood-brain barrier which thus plays a very important role in the regulation of brain metabolism.  相似文献   

3.
To obtain a clearer concept of the mechanism of organic solute transport in mammalian cells, we have attempted to reconstitute a functional transport system for amino acids from plasma membranes of Ehrlich ascites cells. Purified plasma membranes were dissolved in 2% Na cholate--4 M urea, a mixture which brought over 85% of the membrane proteins into solution. After centrifugation of the solubilized material for 2 hrs at 100,000 x g, the supernatant was dialyzed in the cold for 20 hrs with additional lipid. The reformed vesicles were tested for the ability to transport amino acids. The preliminary results obtained show that the uptake of alpha-aminoisobutyric acid can be inhibited by L-methionine and much less by L-leucine as would be predicted from the known properties of alpha-aminoisobutyric transport in the intact cells. In addition, it has been possible to show accelerated efflux of intravesicular phenylalanine when phenylalanine is added to the trans side (medium side). The data are consistent with the conclusion that there is carrier mediated transport in the reconstituted vesicles.  相似文献   

4.
Whole blood (WB) and plasma (P) amino acid transfers across the portal drained viscera and the liver were determined during 6 h of a constant p-aminohippuric acid infusion in three hourly-fed Landrace x Large-White pigs (30.5 kg, mean live weight) surgically prepared with chronically inserted catheters in a mesenteric vein (MV), the portal vein (PV), an hepatic vein (HV) and the carotid artery (CA). Plasma and WB amino acid concentrations were determined in the CA, PV and HV. The plasma/WB ratios showed no significant differences for vessels except for lysine and glutamate for which this ratio is significantly higher in the HV and in the PV for lysine. This suggests that the PV lysine and HV glutamate were preferentially transported in the plasma. In the PV, threonine, valine and alanine are transported by both plasma and red blood cells. These data show that the contribution of plasma and whole blood to amino acid transport can be different between amino acids and between individual tissues.  相似文献   

5.
Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid. Experiments on isolated membrane vesicles from capillary endothelial cells of bovine brain demonstrated the polar arrangement of amino acid and glucose transporters, and the utility of such arrangements have been proposed. For instance, passive carriers for glutamine and glutamate have been found only in the luminal membrane of blood-brain barrier cells, while Na-dependent secondary active transporters are at the abluminal membrane. This organization could promote the net removal of nitrogen-rich amino acids from brain, and account for the low level of glutamate penetration into the central nervous system. Furthermore, the presence of a gamma-glutamyl cycle at the luminal membrane and Na-dependent amino acid transporters at the abluminal membrane may serve to modulate movement of amino acids from blood-to-brain. Passive carriers facilitate amino acid transport into brain. However, activation of the gamma-glutamyl cycle by increased plasma amino acids is expected to generate oxoproline within the blood-brain barrier. Oxoproline stimulates secondary active amino acid transporters (Systems A and B(o)+) at the abluminal membrane, thereby reducing net influx of amino acids to brain. Finally, passive glucose transporters are present in both the luminal and abluminal membranes of the blood-brain barrier. Interestingly, a high affinity Na-dependent glucose carrier has been described only in the abluminal membrane. This raises the question whether glucose entry may be regulated to some extent. Immunoblotting studies suggest more than one type of passive glucose transporter exist in the blood-brain barrier, each with an asymmetrical distribution. In conclusion, it is now clear that the blood-brain barrier participates in the active regulation of brain extracellular fluid, and that the diverse functions of each plasma membrane domain contributes to these regulatory functions.  相似文献   

6.
It is well known that the amino acids in the blood are distributed between the plasma and inside the cells. This study was conducted to determine whether amino acids can be located adsorbed on blood cell membranes. The amino acid concentration in the deproteinized haemolysed blood was higher than that in the fraction of blood after removal of the blood cell membranes by centrifugation. These results showed that a pool of amino acids representing 21.1% of the whole blood cell amino acids was adsorbed on the blood cell membranes of adult Wistar rats. The non-polar amino acids showed high adsorption on the membrane, whereas out of the polar amino acid group, only the non-ionic amino acids did adsorb.Bioquimica i Biologia Molecular. Dept. de Biologia Fonamental i Ciencies de la Salut.  相似文献   

7.
The clearances of twelve amino acids from the ventricles during ventriculocisternal perfusion in the rabbit have been measured; uptake by the brain was also measured and this permitted the separate computation of loss to brain and loss to blood during the perfusion. Clearance under carrier-free conditions was greater than when a concentration of 5mM unlabeled amino acid was present in the perfusion fluid. Brain uptake was also usually reduced by the presence of unlabeled amino acid due presumably to suppression of accumulation by brain cells. Reduction of transport across the blood-brain barrier would tend to increase brain uptake, and there was some evidence for a balance between the two opposing tendencies. Inhibition of clearance of a given labeled amino acid could be brought about by unlabeled amino acids of different molecular species. In general, the amino acids fell into three categories: neutral, acidic, and basic, and there was some overlap between them; of the neutral amino acids the A- and L-classification of Christensen was valid, although once again there was some overlap. If, during ventriculo-cisternal perfusion of a labeled amino acid, the activity of this labeled amino acid in the blood was raised well above that in the inflowing perfusion fluid, the labeled amino acid continued to be cleared from the perfusion fluid, suggesting uphill transport. On this basis it was suggested that the normally low concentrations of amino acids in the cerebrospinal fluid (CSF), by comparison with those in plasma, were due to an active transport from the CSF to the blood. Substrate-facilitated transport, whereby the penetration of labeled amino acid into the perfusion fluid from blood could be accelerated by adding unlabeled amino acid to the perfusion fluid, or vice versa, was demonstrated.  相似文献   

8.
Amino acid transport was studied in three neuroblastoma clones, N-TD6, which synthesizes norepinephrine, N-T16, which synthesizes small amounts of serotonin, and N-S20Y, which synthesizes acetylcholine. All three clones exhibited high-affinity saturable transport systems for tyrosine, phenylalanine, tryptophan and glycine as well as systems unsaturated at amino acid concentrations of 1 mM in the external medium. Tyrosine, phenylalanine and tryptophan enter all three clones by rapidly exchanging transport systems which appear to be relatively insensitive to lowered external [Na+] or to the presence of 2,4-dinitrophenol (DNP). Glycine uptake was slower and was much more sensitive to lowered external [Na+] and to the presence of DNP in the medium. Glycine transport in N-T16 cells was decreased more markedly at low temperature than was transport of the three aromatic amino acids. Km and Vmax values found for saturable transport of tyrosine, phenylalanine and tryptophan were sufficiently low to suggest that, if similar amino acid transport systems exist in neuronal membranes, and if amino acid levels in brain extracellular fluid are similar to levels in plasma, such systems may serve, in conjunction with transport systems in cerebral capillaries, to limit the entry of amino acids into brain cells when blood amino levels are near the normal physiological range.  相似文献   

9.
The relationship between Golgi and cell surface membranes of intestinal cells was studied. These membranes were isolated from intestinal crypt cells and villus cells. The villus cell membranes consisted of microvillus membrane, a Golgi-rich fraction, and two membrane fractions interpreted as representing lateral-basal membranes. The villus cell microvillus membrane was purified by previously published techniques while the other membranes were obtained from isolated cells by differential centrifugation and density gradient velocity sedimentation. The two membrane fractions obtained from villus cells and considered to be lateral-basal membranes were enriched for Na+,K+-ATPase activity, but one also showed enrichment in glycosyltransferase activity. The Golgi membrane fraction was enriched for glycosyltransferase activity and had low to absent Na+,K+-ATPase activity. Adenylate cyclase activity was present in all membrane fractions except the microvillus membrane but co-purified with Golgi rather than lateral-basal membranes. Electron microscopy showed that the Golgi fraction consisted of variably sized vesicles and cisternalike structures. The two lateral-basal membrane fractions showed only vesicles of smaller, more uniform size. After 125I labeling of isolated intact cells, radioactivity was found associated with the lateral-basal and microvillus membrane fractions and not with the Golgi fraction. Antibody prepared against lateral-basal membrane fractions reacted with the surface membrane of isolated villus cells. The membrane fractions from isolated crypt cells demonstrated that all had high glycosyltransferase activity. The data show that glycosyltransferase activity, in addition to its Golgi location, may be a significant property of the lateral-basal portion of the intestinal villus cell plasma membrane. Data obtained with crypt cells support earlier data and show that the crypt cell surface membrane possesses glycosyltransferase activity.  相似文献   

10.
The objectives of this research were to separate and partially characterize the components of rat liver cell plasma membranes. The plasma membranes of liver cells obtained from normal Wistar male rats were isolated using density gradients. The purified membrane was then solubilized in phenol-urea-acetic acid and gel electrophoresis was performed on the solubilized membrane components. Samples of the eluate collected following preparative gel electrophoresis were phosphorus positive-ninhydrin positive; phosphorus negative-ninhydrin positive; phosphorus po6itive-ninhydrin negative; and phosphorus negative-ninhydrin negative. The amino acid analyses showed that the proteins of the separated components were different and that no one component contained more than 6% of the total membrane protein. Liver cell plasma membranes contain components that differ from those of red blood cell plasma membranes. These components can be further divided into subgroups of proteins, i.e., phospholipoproteins and protein alone. The concept of a group of proteins composing the membrane is extended to one of various subgroups on the basis of their different affinity for lipid.  相似文献   

11.
We have tested the hypothesis that transit through the interstitial fluid, rather than across cell membranes, is rate limiting for amino acid uptake from blood into muscle in human subjects. To quantify muscle transmembrane transport of naturally occurring amino acids, we developed a novel 4-pool model that distinguishes between the interstitial and intracellular fluid compartments. Transport kinetics of phenylalanine, leucine, lysine, and alanine were quantified using tracers labeled with stable isotopes. The results indicate that interstitial fluid is a functional compartment insofar as amino acid kinetics are concerned. In the case of leucine and alanine, transit between blood and interstitial fluid was potentially rate limiting for muscle amino acid uptake and release in the postabsorptive state. For example, in the case of leucine, the rate of transport between blood and interstitial fluid compared with the corresponding rate between interstitial fluid and muscle was 247 +/- 36 vs. 610 +/- 95 nmol.min(-1).100 ml leg(-1), respectively (P < 0.05). Our results are consistent with the process of diffusion governing transit from blood to interstitial fluid without selectivity, and of specific amino acid transport systems with varying degrees of efficiency governing transit from interstitial fluid to muscle. These results imply that changes in factors that affect the transit of amino acids from blood through interstitial fluid, such as muscle blood flow or edema, could play a major role in controlling the rate of muscle amino acid uptake.  相似文献   

12.
Uptake of amino acids by cultured neuroblastoma and astrocytoma cells was studied in the presence and absence ofl-histidine. Intracellularly accumulated histidine was assumed to induce accumulation of radioactively labeled amino acids from medium by means of exchange transport. Neuroblastoma cells accumulated more histidine than astrocytoma cells and were more sensitive to the enhancement of the uptake of other large neutral amino acids by histidine. Histidine also increased glutamic acid uptake in astrocytoma cells, but reduced it in neuroblastoma cells. The greatest differences between the cell lines in amino acid uptake without histidine were found with acidic amino acids (astrocytoma cells accumulated them more than neuroblastoma cells) and with taurine (the reverse was found). The uptake and exchange mechanisms for some neutral and acidic amino acids may thus be dissimilar in the plasma membranes of cultured cells of neuronal and glial origin.  相似文献   

13.
The cell membrane permeability governs the rate of solute transport into and out of the cell, significantly affecting the cell's metabolic processes, viability, and potential usefulness in both biotechnological applications and physiological systems. Most previous studies of the cell membrane permeability have neglected the possible effects of suspending medium on membrane transport, even though there is extensive experimental evidence that suspending phase composition can significantly affect other properties related to the cell membrane (e.g., cell deformability, fragility, and aggregation rate). This study examined the effects of suspending phase composition (both proteins and electrolytes) on the permeability of human red blood cells to the metabolites creatinine and uric acid. Data were obtained using a stirred ultrafiltration device with direct cell- and proteinfree sampling through a semipermeable membrane. Both the uric acid and creatinine permeabilities were strongly affected by the suspending phase composition, with the permeabilities in different buffer solutions varying by as much as a factor of three. The predominant factors affecting the permeability were the presence (or absence) of chloride, phosphate/adenine, and proteins, although the magnitude and even the direction of these effects were significantly different for creatinine and uric acid transport. The dramatic differences in behavior for uric acid and creatinine reflect the different transport mechanisms for these solutes, with uric acid transported by a carrier-mediated mechanism and creatinine transported by passive diffusion through the lipid bilayer. These results provide important insights into the effects of solution environment on cell membrane transport and other cell membrane-mediated properties. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
Glycosaminoglycans were isolated from plasma membranes of hepatic and renal tubule cells of guinea pig. Plasmalemma of renal tubule cells contained more total glycosaminoglycans, hyaluronic acid, chondroitin-4 sulfates and chondroitin-6 sulfates, and less dermatan sulfates and heparin sulfates than liver plasma membranes. These glycocalyx components, owing to their polyanionic properties, may have a role in the transport of water, ions, and macromolecules across the cell membrane.  相似文献   

15.
Individual amino acid levels and compartmentation in chick blood were measured on day 20 of incubation, at hatching (day 0), or after 1 or 5 days of free life, and compared with those of adult chickens. Blood cell amino acid concentrations were almost one order of magnitude higher than those of plasma, with higher values than those found in mammalian erythrocytes. This difference may be due to the capability for protein synthesis of the nucleated cells coupled with a postulated utilization of amino acids as fuel. The most common pattern of individual plasma amino acid levels was a slight rise at hatching followed by a large decrease, with minimal values for adults. The patterns in the cells did not always coincide with those for plasma. Total blood amino acid levels increased steadily during the period studied due to the increase in intracellular amino acids, giving rise to increasing blood-cell/plasma concentration ratios. These changes showed higher availability of plasma amino acids just after hatching, while the cell concentrations increased steadily to the maximum values in adults. The increase in alanine levels in cells with little changes in plasma can be correlated with the role of this amino acid as the main 2-amino nitrogen carrier in the avian bloodstream. The high amino acid levels in the cells suggest that these cells act as inter-organ transporters and reservoirs of amino acids, they have a different role in their handling and metabolism from those of mammals.  相似文献   

16.
Vesicles are released during the in vitro culture of sheep reticulocytes which can be harvested by centrifugation at 100,000 X g for 90 min. These vesicles contain a number of activities, characteristic of the reticulocyte plasma membrane, which are known to diminish or disappear upon reticulocyte maturation. The activities include acetylcholinesterase, cytochalasin B binding (glucose transporter) nucleoside binding (i.e. nucleoside transporter), Na+-independent amino acid transport, and the transferrin receptor. Enzymes of cytosolic origin are not detectable or are present at low activity in the vesicles. Cultures of whole blood, mature red cells, or white cells do not yield comparable levels of these activities, supporting the conclusion that the activities arise from the reticulocytes. In addition, the lipid composition of the vesicles shows the high sphingomyelin content characteristic of sheep red cell plasma membranes, but not white cell or platelet membranes, also consistent with the conclusion that the vesicles are of reticulocyte origin. It is suggested that vesicle externalization may be a mechanism for shedding of specific membrane functions which are known to diminish during maturation of reticulocytes to erythrocytes.  相似文献   

17.
The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets.  相似文献   

18.
The mechanisms of transport of p-(dihydroxyboryl)-phenylalanine (BPA) through the cell membrane were investigated in vitro, evaluating especially the systems responsible for the transport of neutral amino acids as potential carriers for BPA. Rat 9L gliosarcoma cells and Chinese hamster V79 cells were exposed to BPA under controlled conditions and in a defined medium that was free of amino acids. The time course of (10)B (delivered by BPA) uptake and efflux was measured under different conditions. To analyze the intracellular boron content, direct-current plasma atomic emission spectroscopy (DCP-AES) was used after separating the cells from extracellular boron in the cell medium using an oil filtration technique. The dependence of factors such as cell type, temperature, composition and concentration of amino acids and specific substrates for amino acid transport systems in the culture medium or in intracellular compartments on BPA uptake and efflux were studied. The results of this study support the hypothesis that BPA is transported by the L system and that transport can be further stimulated by amino acids preaccumulated in the cell by either the L or A amino acid transport system. Copyright [bj54] by Radiation Research Society  相似文献   

19.
Na+-dependent amino acid transport can be reconstituted from solubilized Ehrlich cell plasma membranes by addition of asolectin vesicles, gel filtration, and a freeze-thaw cycle. Removal of phosphatidic acid (approximately 10% of the total lipid) by Ba2+ precipitation reduces the efficiency of reconstitution of Na+-dependent amino acid transport by approximately 73% and decreases intravesicular volume of the proteoliposomes by approximately 43%. The loss of transport activity is not due to exclusion of specific proteins during reconstitution. The phosphatidic acid-free liposomes are less permeable and require more time to attain an equilibrium distribution of solute. Transport activity and intravesicular volume can be restored to Ba2+-precipitated asolectin proteoliposomes by addition of egg-phosphatidic acid during reconstitution. The extent of recovery of transport activity is proportional to the change in intravesicular volume and depends on the amount of phosphatidic acid present. Replacement of phosphatidic acid with 20% phosphatidylserine or phosphatidylglycerol leads to increases in intravesicular volume with little or no increase in amino acid transport. Generation of phosphatidic acid in situ by treatment of Ba2+-precipitated proteoliposomes with phospholipase D also restored transport. The observed increase in transport activity (9-fold) is accompanied by a 46% increase in intravesicular volume, presumably caused by vesicle fusion. Phosphatidic acid is also required for successful reconstitution of Na+-dependent amino acid transport from pure phosphatidylcholine:phosphatidylethanolamine (1:1) mixtures with only a small change (approximately 16%) in intravesicular volume. The results provide evidence for both indirect and direct effects of phosphatidic acid on reconstitution of Na+-dependent amino acid transport. The indirect effects occur through enlargement of intravesicular volume, large vesicles showing higher rates of transport. However, there is also evidence to indicate a specific effect of phosphatidic acid on the Na+-dependent amino acid transporter, since other acidic lipids may change intravesicular volume without a commensurate change in transport activity.  相似文献   

20.
A specific effect of Cu2+ eliciting selective changes in the permeability of intact Saccharomyces cerevisiae cells is described. When 100 microM CuCl2 was added to a cell suspension in a buffer of low ionic strength, the permeability barrier of the plasma membranes of the cells was lost within 2 min at 25 degrees C. The release of amino acids was partial, and the composition of the amino acids released was different from that of those retained in the cells. Mostly glutamate was released, but arginine was mainly retained in the cells. Cellular K+ was released rapidly after CuCl2 addition, but 30% of the total K+ was retained in the cells. These and other observations suggested that Cu2+ caused selective lesions of the permeability barrier of the plasma membrane but did not affect the permeability of the vacuolar membrane. These selective changes were not induced by the other divalent cations tested. A novel and simple method for differential extraction of vacuolar and cytosolic amino acid pools by Cu2+ treatment was established. When Ca2+ was added to Cu2+-treated cells, a large amount of Ca2+ was sequestered into vacuoles, with formation of an inclusion of a Ca2+-polyphosphate complex in the vacuoles. Cu2+-treated cells also showed enhanced uptake of basic amino acids and S-adenosylmethionine. The transport of these substrates showed saturable kinetics with low affinities, reflecting the vacuolar transport process in situ. With Cu2+ treatment, selective leakage of K+ from the cytosolic compartment appears to create a large concentration gradient of K+ across the vacuolar membrane and generates an inside-negative membrane potential, which may provide a driving force of uptake of positively charged substances into vacuoles. Cu2+ treatment provides a useful in situ method for investigating the mechanisms of differential solute pool formation and specific transport phenomena across the vacuolar membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号