首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
From a literature survey, 117 chemicals are tabulated that have been assayed in 179 assays for their clastogenic effects in Pisum. Of the 117 chemicals that have been assayed, 65 are reported at giving a positive reaction (i.e. causing chromosome aberrations), 30 positive with a dose response, five borderline positive. Seventeen chemicals gave a negative response. Eighty-one percent of the chemicals gave a definite positive response. A c-mitotic effect was detected from treatment with 17 chemicals. In addition to the above tabulation of chemicals, 39 chemicals have been reported with an antimitotic effect. Thirteen assays have been recorded for five types of radiation, which with the exception of ultrasound reacted positively. The results of assays with 38 chemicals and/or radiations in combined treatments, as well as 15 chemicals and three types of radiations that induce somatic mutations are tabulated. The Pisum sativum (2n=14) bioassay has been shown to be a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis for somatic mutations induced by chemicals, radiations, and environmental pollutants. For some chemicals, the Pisum assay is not as sensitive in assessing clastogenicity as the Allium assay, although this should be considered in relative terms. Pisum fulvum (2n=14) has been used in clastogenic studies also, but to a much lesser extent.  相似文献   

2.
As a priority area of the Evaluation-Guided Development of In Vitro Toxicity and Toxicokinetic Tests (EDIT) programme, an in vitro protein precipitation (PP) assay was used on the 50 reference chemicals of the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) project, to confirm and extend the MEIC results. Dose-response curves were generated for only 30 of the chemicals, and the concentrations causing 10% (EC10) and 50% (EC50) protein precipitation versus the positive control were chosen as endpoints. The number of chemicals with a positive response increased to 46 when a new endpoint, the minimum effect concentration (MEC) that induces protein precipitation with respect to the negative control, was used. When the results were correlated with in vitro cytotoxicity in human cell lines, a similarly good correlation was found between the various endpoints of the PP assay at 5 hours and the 24-hour IC50 average cytotoxicity in human cell lines, even though the number of chemicals included in the correlation was larger for the MEC. Using the prediction error, the endpoint that gave the best correlation between the PP assay and human cell cytotoxicity was once more found to be the 5-hour MEC, and this was chosen for the PP assay. The sensitivity of the PP assay is lower than that of the in vitro cell-line cytotoxicity assay, possibly due to its shorter exposure period and because precipitation is the ultimate event in the sequence of a protein disturbance. It is expected that earlier denaturation steps would give better sensitivity. However, this simple, inexpensive and rapid assay could be useful in the early stages of testing chemicals.  相似文献   

3.
The selection of maximum concentrations for in vitro mammalian cell genotoxicity assays was reviewed at the 5th International Workshop on Genotoxicity Testing (IWGT), 2009. Currently, the top concentration recommended when toxicity is not limiting is 10mM or 5mg/ml, whichever is lower. The discussion was whether to reduce the limit, and if so whether the 1mM limit proposed for human pharmaceuticals was appropriate for testing other chemicals. The consensus was that there was reason to consider reducing the 10mM limit, and many, but not all, attendees favored a reduction to 1mM. Several proposals are described here for the concentration limit. The in vitro cytogenetics expert working group also discussed appropriate measures and level of cytotoxicity. Data were reviewed from a multi-laboratory trial of the in vitro micronucleus (MN) assay with multiple cell types and several types of toxicity measurements. The group agreed on a preference for toxicity measures that take cell proliferation after the beginning of treatment into account (relative increase in cell counts, relative population doubling, cytokinesis block proliferation index or replicative index), and that this applies both to in vitro MN assays and to in vitro chromosome aberration assays. Since relative cell counts (RCC) underestimate toxicity, many group members favored making a recommendation against the use of RCC as a toxicity measure for concentration selection. All 14 chemicals assayed for MN induction in the multi-laboratory trial were detected without exceeding 50% toxicity by any measure, but some were positive only at concentrations with toxicity quite close to 50%. The expert working group agreed to accept the cytotoxicity range recommended by OECD guideline 487 (55±5% toxicity at the top concentration scored). This also reinforces the original intent of the guidance for the in vitro chromosome aberration assay, where ">50%" was intended to target the range close to 50% toxicity.  相似文献   

4.
According to the 2001 National Institutes of Health guidance document on using in vitro data to estimate in vivo starting doses for acute toxicity, the performance of the electrical current exclusion method (ECE) was studied for its suitability as an in vitro cytotoxicity test. In a comparative study, two established in vitro assays based on the quantification of metabolic processes necessary for cell proliferation or organelle integrity (the MTT/WST-8 [WST-8] assay and the neutral red uptake [NRU] assay), and two cytoplasm membrane integrity assays (the trypan blue exclusion [TB] and ECE methods), were performed. IC50 values were evaluated for 50 chemicals ranging from low to high toxicity, 46 of which are listed in Halles Registry of Cytotoxicity (RC). A high correlation was found between the IC50 values obtained in this study and the IC50 data published in the RC. The assay sensitivity was highest for the ECE method, and decreased from the WST-8 assay to the NRU assay to the TB assay. The consistent results of the ECE method are based on technical standardisation, high counting rate, and the ability to combine cell viability and cell volume analysis for detection of the first signs of cell necrosis and damage of the cytoplasmic membrane caused by cytotoxic agents.  相似文献   

5.
The Bhas promotion assay is a cell culture transformation assay designed as a sensitive and economical method for detecting the tumour-promoting activities of chemicals. In order to validate the transferability and applicability of this assay, an inter-laboratory collaborative study was conducted with the participation of 14 laboratories. After confirmation that these laboratories could obtain positive results with two tumour promoters, 12-O-tetradecanoylphorbol-13-acetate (TPA) and lithocholic acid (LCA), 12 coded chemicals were assayed. Each chemical was tested in four laboratories. For eight chemicals, all four laboratories obtained consistent results, and for two of the other four chemicals, only one of the four laboratories showed inconsistent results. Thus, the rate of consistency was high. During the study, several issues were raised, each of which were analysed step-by-step, leading to revision of the protocol of the original assay. Among these issues were the importance of careful maintenance of mother cultures and the adoption of test concentrations for toxic chemicals. In addition, it is suggested that three different types of chemicals show positive promoting activity in the assay. Those designated as T-type induced extreme growth enhancement, and included TPA, mezerein, PDD and insulin. LCA and okadaic acid belonged to the L-type category, in which transformed foci were induced at concentrations showing growth-inhibition. In contrast, M-type chemicals, progesterone, catechol and sodium saccharin, induced foci at concentrations with little or slight growth inhibition. The fact that different types of chemicals similarly induce transformed foci in the Bhas promotion assay may provide clues for elucidating mechanisms of tumour promotion.  相似文献   

6.
Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to examine DNA damage in single cells. The lesion-specific DNA repair enzyme formamidopyrimidine glycoslyase (Fpg) can be used in conjunction with the comet assay to detect 8-oxoguanine and other damaged bases, which are products of oxidative damage. Fpg was used to detect oxidative DNA damage in experiments where isolated oyster (Crassostrea virginica) and clam (Mercenaria mercenaria) hemocytes were exposed to hydrogen peroxide. Standard enzyme buffers used with Fpg and the comet assay produced unacceptably high amounts of DNA damage in the marine bivalve hemocytes used in this study necessitating a modification of existing methods. A sodium chloride based reaction buffer was successfully used. Oxidative DNA damage can be detected in isolated oyster and clam hemocytes using Fpg and the comet assay when the sodium chloride reaction buffer and protocols outlined here are employed. The use of DNA repair enzymes, such as Fpg, in conjunction with the comet assay expands the usefulness and sensitivity of this assay, and provides important insights into the mechanisms of DNA damage.  相似文献   

7.
Modifications to the alkaline Comet assay by using lesion-specific endonucleases, such as formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (ENDOIII, also known as Nth), can detect DNA bases with oxidative damage. This modified assay can be used to assess the genotoxic/carcinogenic potential of environmental chemicals. The goal of this study was to validate the ability of this modified assay to detect oxidative stress-induced genotoxicity in Drosophila melanogaster (Oregon R(+)). In this study, we used three well known chemical oxidative stress inducers: hydrogen peroxide (H(2)O(2)), cadmium chloride (CdCl(2)) and copper sulfate (CuSO(4)). Third instar larvae of D. melanogaster were fed various concentrations of the test chemicals (50-200μM) mixed with a standard Drosophila food for 24h. Alkaline Comet assays with and without the FPG and ENDOIII enzymes were performed with midgut cells that were isolated from the control and treated larvae. Our results show a concentration-dependent increase (p<0.05-0.001) in the migration of DNA from the treated larvae. ENDOIII treatment detected more oxidative DNA damage (specifically pyrimidine damage) in the H(2)O(2) exposed larvae compared to FPG or no enzyme treatment (buffer only). In contrast, FPG treatment detected more oxidative DNA damage (specifically purine damage) in CuSO(4) exposed larvae compared to ENDOIII. Although previously reported to be a potent genotoxic agent, CdCl(2) did not induce more oxidative DNA damage than the other test chemicals. Our results show that the modified alkaline Comet assay can be used to detect oxidative stress-induced DNA damage in D. melanogaster and thus may be applicable for in vivo genotoxic assessments of environmental chemicals.  相似文献   

8.
New chemicals are being added each year to the existing burden of toxic substances in the environment. This has led to increased pollution of ecosystems as well as deterioration of the air, water, and soil quality. Excessive agricultural and industrial activities adversely affect biodiversity, threatening the survival of species in a particular habitat as well as posing disease risks to humans. Some of the chemicals, e.g., pesticides and heavy metals, may be genotoxic to the sentinel species and/or to non-target species, causing deleterious effects in somatic or germ cells. Test systems which help in hazard prediction and risk assessment are important to assess the genotoxic potential of chemicals before their release into the environment or commercial use as well as DNA damage in flora and fauna affected by contaminated/polluted habitats. The Comet assay has been widely accepted as a simple, sensitive, and rapid tool for assessing DNA damage and repair in individual eukaryotic as well as some prokaryotic cells, and has increasingly found application in diverse fields ranging from genetic toxicology to human epidemiology. This review is an attempt to comprehensively encase the use of Comet assay in different models from bacteria to man, employing diverse cell types to assess the DNA-damaging potential of chemicals and/or environmental conditions. Sentinel species are the first to be affected by adverse changes in their environment. Determination of DNA damage using the Comet assay in these indicator organisms would thus provide information about the genotoxic potential of their habitat at an early stage. This would allow for intervention strategies to be implemented for prevention or reduction of deleterious health effects in the sentinel species as well as in humans. IITR Communication No. 2656  相似文献   

9.
目的对IRM-2、ICR及615小鼠骨髓细胞体外照射后细胞损伤进行比较研究,探讨IRM-2小鼠的抗辐射损伤机制。方法用常规法进行外周血白细胞和骨髓有核细胞计数;应用化学发光法检测不同剂量γ射线对小鼠骨髓细胞活力的影响;用PA法(FITC-Annexin V和PI标记法)检测骨髓细胞凋亡。结果IRM-2小鼠骨髓细胞和外周血白细胞计数高于ICR、615小鼠,经统计学处理后差异有显著性(P〈0.01)。经1 Gy、4 Gy照射后6 h,IRM-2、ICR、615小鼠骨髓细胞相对活力分别为86.6%和79.3%,77.5%和70.4%,77.4%和68.7%,IRM-2小鼠与ICR、615小鼠比较,细胞活力有所提高,IRM-2小鼠骨髓造血细胞死亡率及凋亡率低于ICR及615小鼠。结论IRM-2小鼠有较强的免疫及造血功能,骨髓造血细胞凋亡率低于ICR及615小鼠,其抗辐射机制仍需进一步研究。  相似文献   

10.
Extensive studies on the safety evaluation of chemicals have indicated that a considerable number of non-genotoxic chemicals are carcinogenic. Tumour promoters are likely to be among these non-genotoxic carcinogens, and their detection is considered to be an important approach to the prevention of cancer. In this review, the results are summarised for in vitro transformation assays involving established cell lines, and for an assay for inhibition of gap junctional intercellular communication for the detection of tumour promoters, which involves V79 cells. Although the number of chemicals examined is still too small to permit a full evaluation of the correlation between in vitro cell transformation and in vivo carcinogenicity, it is clear that the sensitivity of the focus formation assay is very high. In the case of the metabolic cooperation assay, the sensitivity appears to be rather poor, but the assay can be considered to be useful because of its simple procedure and its considerable database. These in vitro assays for tumour promoters are recommended as useful tools for the detection of non-genotoxic carcinogens.  相似文献   

11.
Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to examine DNA damage in single cells. The lesion-specific DNA repair enzyme formamidopyrimidine glycoslyase (Fpg) can be used in conjunction with the comet assay to detect 8-oxoguanine and other damaged bases, which are products of oxidative damage. Fpg was used to detect oxidative DNA damage in experiments where isolated oyster (Crassostrea virginica) and clam (Mercenaria mercenaria) hemocytes were exposed to hydrogen peroxide. Standard enzyme buffers used with Fpg and the comet assay produced unacceptably high amounts of DNA damage in the marine bivalve hemocytes used in this study necessitating a modification of existing methods. A sodium chloride based reaction buffer was successfully used. Oxidative DNA damage can be detected in isolated oyster and clam hemocytes using Fpg and the comet assay when the sodium chloride reaction buffer and protocols outlined here are employed. The use of DNA repair enzymes, such as Fpg, in conjunction with the comet assay expands the usefulness and sensitivity of this assay, and provides important insights into the mechanisms of DNA damage.  相似文献   

12.
Photoactivation and binding of photoactive chemicals to proteins is a known prerequisite for the formation of immunogenic photoantigens and the induction of photoallergy. The intensive use of products and the availability of new chemicals, along with an increasing exposure to sun light contribute to the risk of photosensitizing adverse reactions. Dendritic cells (DC) play a pivotal role in the induction of allergic contact dermatitis. Human peripheral blood monocyte derived dendritic cells (PBMDC) were thus perceived as an obvious choice for the development of a novel in vitro photosensitization assay using the modulation of cell surface protein expression in response to photosensitizing agents. In this new protocol, known chemicals with photosensitizing, allergenic or non-allergenic potential were pre-incubated with PBMDCs prior to UVA irradiation (1 J/cm(2)). Following a 48 h incubation, the expression of the cell surface molecules CD86, HLA-DR and CD83 was measured by flow cytometry. All tested photosensitizers induced a significant and dose-dependent increase of CD86 expression after irradiation compared to non-irradiated controls. Moreover, the phototoxicity of the chemicals could also be determined. In contrast, (i) CD86 expression was not affected by the chosen irradiation conditions, (ii) increased CD86 expression induced by allergens was independent of irradiation and (iii) no PBMDC activation was observed with the non-allergenic control. The assay proposed here for the evaluation of the photoallergenic potential of chemicals includes the assessment of their allergenic, phototoxic and toxic potential in a single and robust test system and is filling a gap in the in vitro photoallergenicity test battery.  相似文献   

13.
The effect of exposure to extremely low-frequency pulsed electromagnetic fields (EMFs) on DNA repair capability and on cell survival in human lymphocytes damaged in vitro with gamma rays was studied by two different micromethods. In the first assay, which measures DNA repair synthesis (unscheduled DNA synthesis, UDS), lymphocyte cultures were stimulated with phytohemagglutinin (PHA) for 66 h and then treated with hydroxyurea (which blocks DNA replication), irradiated with 100 Gy of 60Co, pulsed with [3H]thymidine ([3H]TdR), and then exposed to pulsed EMFs for 6 h (the period in which cells repaired DNA damage). In the second assay, which measures cell survival after radiation or chemical damage, lymphocytes were first irradiated with graded doses of gamma rays or treated with diverse antiproliferative agents, and then stimulated with PHA, cultured for 72 h, and pulsed with [3H]TdR for the last 6 h of culture. In this case, immediately after the damage induced by either the radiation or chemicals, cultures were exposed to pulsed EMFs for 72 h, during which cell proliferation took place. Exposure to pulsed EMFs did not affect either UDS or cell survival, suggesting that this type of nonionizing radiation--to which humans may be exposed in the environment, and which is used for both diagnostic and therapeutic purposes--does not affect DNA repair mechanisms.  相似文献   

14.
Genetic toxicology studies play a central role in the development and marketing of new chemicals for pharmaceutical, agricultural, industrial, and consumer use. During the discovery phase of product development, rapid screening tests that require minimal amounts of test materials are used to assist in the design and prioritization of new molecules. At this stage, a modified Salmonella reverse mutation assay and an in vitro micronucleus test with mammalian cell culture are frequently used for screening. Regulatory genetic toxicology studies are conducted with a short list of compounds using protocols that conform to various international guidelines. A set of four assays usually constitutes the minimum test battery that satisfies global requirements. This set includes a bacterial reverse mutation assay, an in vitro cytogenetic test with mammalian cell culture, an in vitro gene mutation assay in mammalian cell cultures, and an in vivo rodent bone marrow micronucleus test. Supplementary studies are conducted in certain instances either as a follow-up to the findings from this initial testing battery and/or to satisfy a regulatory requirement. Currently available genetic toxicology assays have helped the scientific and industrial community over the past several decades in evaluating the mutagenic potential of chemical agents. The emerging field of toxicogenomics has the potential to redefine our ability to study the response of cells to genetic damage and hence our ability to study threshold phenomenon.  相似文献   

15.
Both the V79 and CHO cell lines are routinely used in the in vitro MN screening assay for the detection of possible genotoxicants. The CHO cell line is the predominant cell line currently used in the genetic toxicology testing industry. However, some laboratories routinely utilize the V79 cell line since the in vitro MN screening assay was initially developed using V79 cells. Our laboratory has historically used the CHO cell line. Therefore, our laboratory was interested in comparing the two cell lines with regard to possible similarities or differences in MN induction sensitivity after exposure to cyclophosphamide (CPA) and mitomycin C (MMC), the two standard positive control chemicals routinely used in this assay. Three exposure conditions in the presence of CPA and MMC were examined in both cell lines. Replicate cultures of CHO cells in McCoy's 5A and V79 cells in both McCoy's 5A and E-MEM were established and treated with 5 microg CPA/ml (4h exposure with S9), 0.5 microg MMC (4h exposure without S9) and 0.5 microg MMC (24h exposure without S9). A total of 400 cytochalasin B-blocked binucleated cells and 200 consecutive cells were analyzed from each culture for MN and cell cycle kinetics, respectively. Analysis of the data demonstrated that CHO cells were up to approximately five-fold more sensitive to the induction of CPA- and MMC-induced MN than V79 cells. Both cell lines exhibited similar average generation times among identical exposure groups. Therefore, the difference in MN sensitivity cannot be attributed to possible differences in cell cycle kinetics and is possibly related to inherent cellular differences in the processing of and/or repair of CPA- and MMC-induced damage by V79 and CHO cells.  相似文献   

16.
To validate the alkaline single cell gel (SCG) assay as a tool for the detection of DNA damage in human leukocytes, we investigated the in vitro activity of 18 chemicals. Thirteen of these chemicals (pyrene (PY), benzo(a)pyrene (BaP), cyclophosphamide (CP), 4-nitroquinoline-1-oxide (4NQO), bleomycin (BLM), methylmercury chloride (MMC), mitomycin C (MTC), hydrogen peroxide (HP), diepoxybutane (DEB), glutaraldehyde (GA), formaldehyde (FA), griseofulvin (GF), sodium azide (NA)) are genotoxic in at least one cell system, while five compounds (ascorbic acid (AA), glucose (GL), D-mannitol (MAN), O-vanillin (VAN), chlorophyllin (CHL)) are classified as non-genotoxic. In this in vitro SCG assay, PY, BaP and CP were positive with exogeneous metabolic activation (rat S9 mix) while 4NQO, BLM, MMC, MTC, hydrogen peroxide, and diepoxbutane were positive in the absence of metabolic activation. CHL and VAN were unexpectedly found to induce a dose-dependent increase in DNA migration. AA, GL, and MAN were negative in a non-toxic range of doses. GF gave equivocal results, while FA and GA increased DNA migration at low doses and decreased DNA migration at higher doses. This behaviour is consistent with the known DNA damaging and crosslinking properties of these compounds. These data support the sensitivity and specificity of this assay for identifying genotoxic agents.  相似文献   

17.
The in vivo micronucleus test using mouse colonic epithelial cells was evaluated as the 11th collaborative study organized by the Collaborative Study Group on the micronucleus test (CSGMT) with three model chemicals that were known to induce chromosome damage in mouse colonic cells. Five laboratories participated in this validation study. All three model chemicals, i.e. 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), N-methyl-N-nitrosourea (MNU), and mitomycin C (MMC), induced micronucleated colonic epithelial cells in a 4-day exposure protocol in all participating laboratories. We confirmed that the present single cell suspension method could be used to detect the model chemicals as micronucleus inducers in mouse colonic epithelial cells. Advantages of this method are that experiments are easy to perform and that intact cells can be analyzed. The present study suggested that the colon micronucleus assay proposed here is useful for mechanistic studies of colon carcinogenesis.  相似文献   

18.
Peroxyacetyl nitrate (PAN) is one of a class of common air pollutant formed by the action of sunlight on volatile organic compounds and nitrogen oxides. PAN has been shown to be a bacterial mutagen. To determine if PAN can cause DNA damage in mammalian cells, we exposed murine peripheral blood lymphocytes (PBLs) to various volumes of PAN in vitro and analyzed the cells for chromosome aberrations (CAs), sister chromatid exchanges (SCEs), and DNA damage using the single cell gel (SCG) assay. At in vitro concentrations of PAN that were cytotoxic (inhibited cell division), an increase in DNA damage was noted in the SCG assay. At lower exposure levels that permitted cell division, no increases in SCEs, CAs, or DNA damage were evident. For in vivo studies, male mice were exposed nose-only by inhalation for 1 h to 0, 15, 39 or 78 ppm PAN, and their lung cells removed and cultured for the scoring of SCEs and CAs. In addition, PBLs and lung cells were analyzed by the SCG assay. No dose-related effects were found in any of the assays. These data indicate that PAN does not appear to be a potent clastogen or DNA damaging agent in mammalian cells in vivo or in vitro.  相似文献   

19.
An in vitro assay that measures the activation level of ex vivo activated (EVA) T cells currently being used in the adoptive immunotherapy of metastatic renal cell carcinoma has been developed. This assay is based on the ability of activated, but not resting. T cells to proliferate in response to the protein kinase C activator, phorbol myristate (PMA). To utilize this assay for in-process monitoring and control, we have begun an initial validation of the overall reproducibility of this assay. The proliferation of activated T cells in response to PMA, as measured by the mean cpm values of (3)H-thymidine incorporated, was demonstrated to have intra-assay coefficients of variation (cv's) for individual analysts that were typically less than 10% and rarely exceeded 20%. Activated T cells could be frozen and stored for at least 6 weeks with little or no deterioration in their ability to proliferate in response to PMA. Using these cells, inter-assay cv's that were typically less than 15% were obtained by individual analysts, and overall cv's of 10% to 25% were obtained for different samples assayed by different analysts at different times. This level of variability is very reasonable for a cellular assay. Furhter validation of this assay will address the issues of sensitivity, linearity and selectivity. To date, this assay has been used to analyze over 90 patient EVA cell samples and has revealed a broad range of proliferative responses to PMA. Taken together, these results suggest that this assay may be useful in defining the potency of the activated T cell used therapeutically.  相似文献   

20.
cis-Diamminedichloroplatinum(II) (cis-DDP) has a broad clinical application as an effective anticancer drug. However, development of resistance to the cytotoxic effects is a limiting factor. In an attempt to understand the mechanism of resistance, we have employed a host cell reactivation assay of DNA repair using a cis-DDP-damaged plasmid vector. The efficiency of DNA repair was assayed by measuring the activity of an enzyme coded for by the plasmid vector. The plasmid expression vector pRSVcat contains the bacterial gene coding for chloramphenicol acetyltransferase (CAT) in a configuration which permits expression in mammalian cells. The plasmid was transfected into repair-proficient and -deficient Chinese hamster ovary cells, and CAT activity was subsequently measured in cell lysates. In the repair-deficient cells, one cis-DDP adduct per cat gene was sufficient to eliminate expression. An equivalent inhibition of CAT expression in the repair-proficient cells did not occur until about 8 times the amount of damage was introduced into the plasmid. These results implicate DNA intrastrand cross-links as the lesions responsible for the inhibition of CAT expression. This assay was used to investigate the potential role of DNA repair in mediating cis-DDP resistance in murine leukemia L1210 cells. The parent cell line L1210/0 resembled repair-deficient cells in that about one adduct per cat gene eliminated expression. In three resistant L1210 cell lines, 3-6-fold higher levels of damage were required to produce an equivalent inhibition. This did not correlate with the degree of resistance as these cells varied from 10- to 100-fold resistant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号