首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
AIMS: To examine bacterial contamination of passenger aircraft and to identify aeroplane environments posing the greatest potential health risk. METHODS AND RESULTS: DNA was extracted from ten environmental samples collected on four different flights (three domestic, one international) from a variety of surfaces frequently touched by passengers. PCR clone libraries were made from the DNA samples using bacterial-specific 16S ribosomal DNA (rDNA) primers. A total of 271 bacterial rDNA sequences were obtained. We used BLAST analysis of the rDNA clone sequences to identify sequences in Genbank with the highest sequence similarity. The majority of the rDNA clones obtained from aeroplane environments were more than 97% identical to rDNA sequences from cultured bacterial species. Samples collected from the cabin surfaces (e.g., tray tables and arm rests) had undetectable levels of DNA and produced no PCR products. Bacterial diversity was highest on lavatory surfaces, including door handles, toilet handles, and sink faucets. Sequence data from these surfaces detected species from 58 different bacterial genera, and many of the best BLAST hits matched rDNA sequences of cultured species known to be opportunistic pathogens. The most frequently observed species came from five genera commonly associated with humans: Streptococcus, Staphylococcus, Cornybacterium, Proprionibacterium and Kocuria. CONCLUSIONS: The results show that there is a large diversity of bacterial contamination on aeroplanes, including organisms known to be opportunistic pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results indicate that aeroplanes have the potential to spread an enormous diversity of bacterial species among passengers and destinations. Aeroplane lavatories present an especially significant concern to public health.  相似文献   

2.
Although nematodes are the most abundant metazoan animals on Earth, their diversity is largely unknown. To overcome limitations of traditional approaches (labour, time, and cost) for assessing biodiversity of nematode species in environmental samples, we have previously examined the suitability of high-throughput sequencing for assessing species level diversity with a set of control experiments employing a mixture of nematodes of known number and with known sequences for target diagnostic loci. Those initial experiments clearly demonstrated the suitability of the approach for identification of nematode taxa but lacked the replicate experiments necessary to evaluate reproducibility of the approach. Here, we analyze reads generated from three different PCR amplifications and three different sequencing reactions to examine the differential PCR amplification, the possibility of emulsion PCR artefacts, and differences between sequencing reactions. Our results suggest that both qualitative and quantitative data are consistent and highly reproducible. Variation associated with in-house PCR amplification or emPCR and sequencing are present but the representation of each nematode is very consistent from experiment to experiment and supports the use of read counts to estimate relative abundance of taxa in a metagenetic sample.  相似文献   

3.
DNA条形码技术是利用基因组中一段短的标准序列进行物种的鉴定并探索其亲缘进化关系。本研究对采自海南不同地区降香黄檀五个居群24份样品的psbA-trnH,rbcL,核ITS及ITS2序列进行PCR扩增和测序,比较各序列扩增和测序效率。种间和种内变异,采用BLAST1和邻接 (NJ) 法构建系统聚类树方法评价不同序列的鉴定能力。结果表明ITS2在所研究的材料中具有最高的扩增和测序效率,而ITS扩增效率较低。ITS2完整序列在区分黄檀属不同种间差异具有较大优势。因此可利用ITS2从分子水平区分降香黄檀与其他混伪种。  相似文献   

4.
Following detection of putative Francisella species in aerosol samples from Houston, Texas, we surveyed soil and water samples from the area for the agent of tularemia, Francisella tularensis, and related species. The initial survey used 16S rRNA gene primers to detect Francisella species and related organisms by PCR amplification of DNA extracts from environmental samples. This analysis indicated that sequences related to Francisella were present in one water and seven soil samples. This is the first report of the detection of Francisella-related species in soil samples by DNA-based methods. Cloning and sequencing of PCR products indicated the presence of a wide variety of Francisella-related species. Sequences from two soil samples were 99.9% similar to previously reported sequences from F. tularensis isolates and may represent new subspecies. Additional analyses with primer sets developed for detection and differentiation of F. tularensis subspecies support the finding of very close relatives to known F. tularensis strains in some samples. While the pathogenicity of these organisms is unknown, they have the potential to be detected in F. tularensis-specific assays. Similarly, a potential new subspecies of Francisella philomiragia was identified. The majority of sequences obtained, while more similar to those of Francisella than to any other genus, were phylogenetically distinct from known species and formed several new clades potentially representing new species or genera. The results of this study revise our understanding of the diversity and distribution of Francisella and have implications for tularemia epidemiology and our ability to detect bioterrorist activities.  相似文献   

5.
G C Wang  Y Wang 《Applied microbiology》1997,63(12):4645-4650
PCR is routinely used in amplification and cloning of rRNA genes from environmental DNA samples for studies of microbial community structure and identification of novel organisms. There have been concerns about generation of chimeric sequences as a consequence of PCR coamplification of highly conserved genes, because such sequences may lead to reports of nonexistent organisms. To quantify the frequency of chimeric molecule formation, mixed genomic DNAs from eight actinomycete species whose 16S rRNA sequences had been determined were used for PCR coamplification of 16S rRNA genes. A large number of cloned 16S ribosomal DNAs were examined by sequence analysis, and chimeric molecules were identified by multiple-sequence alignment with reference species. Here, we report that the level of occurrence of chimeric sequences after 30 cycles of PCR amplification was 32%. We also show that PCR-induced chimeras were formed between different rRNA gene copies from the same organism. Because of the wide use of PCR for direct isolation of 16S rRNA sequences from environmental DNA to assess microbial diversity, the extent of chimeric molecule formation deserves serious attention.  相似文献   

6.
AIMS: To develop a specific method for distinguishing and detecting Pythium species. METHODS AND RESULTS: Twenty PCR primers were designed from the sequences of the rDNA internal transcribed spacer 1 (ITS1) region from 34 Pythium species. The specificity of these forward primers paired with ITS2 or ITS4 and reverse universal primers was tested. Five species-specific primers were obtained, other primers showed different specificity to Pythium species. The specific amplifications enabled nine Pythium species to be differentiated. Specific detection of Pythium aphanidermatum from infested plants and P. dimorphum from soil was demonstrated. CONCLUSIONS: A method for identifying nine Pythium species using specific PCR amplification was achieved. SIGNIFICANCE AND IMPACT OF THE STUDY: Because of its rapidness and ease, the results of PCR amplified with different primers can be a powerful method for identifying Pythium species and detecting or monitoring the target fungus directly from plant material, soil and water samples.  相似文献   

7.
MOTIVATION: PCR amplification of highly homologous genes from complex DNA mixtures is known to generate a significant proportion of chimeric sequences. Ribosomal RNA genes are used for microbial species detection and identification in natural environments, and current assessments of microbial diversity are based on these sequences. Thus, chimeric sequences could lead to the discovery of non-existent microbial species and false diversity estimates. METHODS: In essence, our only source of information to decide if a sequence is chimeric or not is to compare it with known, non-chimeric sequences. Putative chimeric sequences were analyzed from sequence fragments of selected length (referred to as words) by comparing nucleotides at corresponding positions. Distances for each word between reference sequences (closely related to the tested sequence) were compared to the differences introduced by the tested sequence. The proposed strategy considers the actual variability existing in different regions throughout the analyzed sequences. The result is an efficient strategy for the evaluation of putative chimeric sequences. AVAILABILITY: A program computing the above procedure, Chimera and Cross-Over Detection and Evaluation (Ccode), is available at http://www.irnase.csic.es/users/jmgrau/index.html and http://www.rtphc.csic.es/download.html.  相似文献   

8.
AIMS: Determination of genetic diversity among UK Burkholderia cepacia isolates from various environmental niches, principally woodland tree rhizospheres and onions. METHODS AND RESULTS: Genus determination was made using polymerase chain reaction (PCR) amplification and fatty acid methyl ester profiling. Genetic diversity was investigated by repetitive sequence genetic PCR fingerprinting. Several onion isolates were similar to clinical isolates but others were diverse. Some environmental isolates were possibly synonymous with B. cepacia and B. gladioli but most from woodland rhizospheres were distinct and clustered together. The 16S rRNA genes of representatives from these clusters were PCR amplified, sequenced and phylogenetically compared with all known Burkholderia and related species. This revealed that the rhizospheric isolates had closest affinity with Burkholderia spp. with known bioremediative and biocontrol capabilities and were unrelated to taxa comprising plant or human pathogenic strains. CONCLUSIONS: All of the analyses investigated revealed that environmental and onion isolates of B. cepacia complex bacteria are genetically diverse but that woodland rhizospheric isolates are related to each other and unrelated to plant or human pathogenic strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Woodland rhizospheric isolates of B. cepacia are potentially good candidates for use in bioremediation and biocontrol, as they appear distinct from plant or human pathogenic strains.  相似文献   

9.
Molecular diversity of halophilic archaea from Ayakekumu salt lake was investigated by the polymerase chain reaction (PCR) amplification and culture methods. 19 water samples and 15 soil samples were taken from 19 sites within Ayakekumu salt lake in winter and spring. Under aerobic culture conditions, some halophilic microorganisms were isolated by five different media. The 16S rRNA gene sequences of 62 red strains were amplified by using PCR, determined by the DNA sequencer and analyzed through the BLASTn program subsequently. Results revealed that all sequences belonged to six genera grouped within the Halobacteriaceae. Mostly 16S rRNA gene sequences related to the genera Halorubrum (47%) and Natrinema (24%) were detected. Subsequent analysis by using Shannon index indicated that cultured halophilic archaeal diversities are not significantly different between winter and spring samplings in Ayakekumu salt lake. Similarity values of haloarchaeal 16S rRNA gene sequences to known sequences were less than 97%, suggesting the presence of two novel taxa. In addition, taxonomic characteristics of Natrinema altunense and Halobiforma lacisalsi isolated from Ayakekumu salt lake had been described previously. The discovery of the novel species provides new opportunity to further examine the diversity of these halophilic microorganisms in Ayakekumu salt lake.  相似文献   

10.
AIMS: To develop a real-time PCR method for rapid differential identification of many clinically important mycobacteria to the species level. METHODS AND RESULTS: Eighteen Mycobacterium species that are considered clinically important were targeted for the identification. One primer pair and 21 pairs of hybridization probes (HybProbes) specific for the genus, species or complex were designed based on the rpoB gene sequences of mycobacteria. Twenty-five different Mycobacterium reference species were tested. In a single round of real-time PCR, all the nontuberculous mycobacteria (NTM) species tested were identified at the genus level and 16 of the 18 targeted species were differentially identified to the species or complex level during the amplification cycles; subsequent melting curve analysis allowed the specific identification of all the target species at the species or complex level without cross-reactivity with the other species. CONCLUSIONS: The developed real-time PCR assay rapidly identifies the NTM at the genus level and 18 clinically important Mycobacterium species at the species or complex level. SIGNIFICANCE AND IMPACT OF THE STUDY: This real-time PCR assay provides a useful tool for the rapid differentiation of most clinically important Mycobacterium species.  相似文献   

11.
T Kohda  K Taira 《DNA research》2000,7(2):151-155
We present an improvement of the inverse PCR method for the determination of end sequences of restriction fragments containing unknown DNA sequences flanked by known segments. In this approach, a short "bridge" DNA is inserted during the self-ligation step of the inverse PCR technique. This bridge DNA acts as primer annealing sites for amplification and subsequent direct sequencing. Successive PCR amplifications enable selective amplification of the unknown sequences from a complex mixture. Unlike previously described methods, our method does not require special materials, such as synthetic adapters or biotinylated primers that must be prepared each time to adapt the target. Furthermore, no complex steps such as dephosphorylation or purification are needed. Our method can save time and reduce the cost of cloning unknown sequences; it is ideal for routine, rapid gene walking. We applied this method to a GC-rich bacterial genome and succeeded in determining the end sequences of a 4.5-kb fragment.  相似文献   

12.
Xu X W  Wu M  Wu Y H  Zhang H B 《农业工程》2007,27(8):3119-3123
Molecular diversity of halophilic archaea from Ayakekumu salt lake was investigated by the polymerase chain reaction (PCR) amplification and culture methods. 19 water samples and 15 soil samples were taken from 19 sites within Ayakekumu salt lake in winter and spring. Under aerobic culture conditions, some halophilic microorganisms were isolated by five different media. The 16S rRNA gene sequences of 62 red strains were amplified by using PCR, determined by the DNA sequencer and analyzed through the BLASTn program subsequently. Results revealed that all sequences belonged to six genera grouped within the Halobacteriaceae. Mostly 16S rRNA gene sequences related to the genera Halorubrum (47%) and Natrinema (24%) were detected. Subsequent analysis by using Shannon index indicated that cultured halophilic archaeal diversities are not significantly different between winter and spring samplings in Ayakekumu salt lake. Similarity values of haloarchaeal 16S rRNA gene sequences to known sequences were less than 97%, suggesting the presence of two novel taxa. In addition, taxonomic characteristics of Natrinema altunense and Halobiforma lacisalsi isolated from Ayakekumu salt lake had been described previously. The discovery of the novel species provides new opportunity to further examine the diversity of these halophilic microorganisms in Ayakekumu salt lake.  相似文献   

13.
Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1. 4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic resolution to identify fungal species and strains, they do provide information on the diversity and dynamics of groups of related species in environmental samples with sufficient resolution to produce discrete bands which can be separated by TGGE. This combination of 18S-rDNA PCR amplification and TGGE community analysis should allow study of the diversity, composition, and dynamics of the fungal community in bulk soil and in the rhizosphere.  相似文献   

14.
采用未培养技术对荷斯坦奶牛瘤胃细菌多样性进行初步分析   总被引:15,自引:0,他引:15  
采用未培养(Culture independent)技术直接从荷斯坦奶牛瘤胃液中提取瘤胃细菌微生物混合DNA(也叫元基因组DNA),利用细菌16SrDNA通用引物27F与1492R,扩增瘤胃混合微生物的16SrDNA,根据16SrDNA序列对瘤胃细菌多样性进行初步分析。通过16SrDNA序列同源性分析,发现有多于一半以上的序列与可培养的菌株的同源性小于90%,属于不可培养的菌株。选用45条测得序列与已知序列构建系统发育树,分析结果表明,它们分属于两大类LGCGPB(the lowG CGram positivebac teria)和CFB(Cytophaga_Flexibacter $CBacteroides group),剩下的克隆尚难确定其分类地位,可能是代表新属和种的序列,这些序列已向GenBank提交并得到序列号(AY986777_AY986791)。  相似文献   

15.
For the determination of the catabolic community diversity that is related to biodegradation potential, we developed a protocol for the assessment of catabolic marker genes in polluted soils. Primers specific to upper pathway extradiol dioxygenase genes were designed which amplified a 469-bp product from Sphingomonas sp. HV3. The constructed primers were used in PCR amplification of upper pathway ring cleavage genes from DNA directly isolated from a mineral oil polluted landfill site, a mineral oil landfarming site and a birch rhizosphere-associated soil that was either artificially polluted with a PAH mixture or not polluted. Amplicons were cloned and subjected to restriction fragment length polymorphism analysis dividing the HhaI-digested products into operational taxonomic units. Altogether 26 different operational taxonomic units were detected with the sequence similarity to known catabolic genes of Alpha-, Beta-, and Gammaproteobacteria. Phylogenetic analysis divided the operational taxonomic units from the polluted soils into seven clusters. Two contained exclusively sequences with no close homologues in the database, therefore representing novel catabolic genes. This large proportion of novel extradiol sequences shows that there is an extensive unknown catabolic diversity in polluted environments.  相似文献   

16.
Simple sequence repeats (SSRs), also known as microsatellites, are highly variable DNA sequences that can be used as markers for the genetic analysis of plants. Three approaches were followed for the development of PCR primers for the amplification of DNA fragments containing SSRs from sorghum [Sorghum bicolor (L.) Moench]: a search for sorghum SSRs in public DNA databases; the use of SSR-specific primers developed in the Poaceae species maize (Zea mays L.) and seashore paspalum grass (Paspalum vaginatum Swartz); and the screening of sorghum genomic libraries by hybridization with SSR oligonucleotides. A total of 49 sorghum SSR-specific PCR primer pairs (two designed from GenBank SSR-containing sequences and 47 from the sequences of genomic clones) were screened on a panel of 17 sorghum and one maize accession. Ten primer pairs from paspalum and 90 from maize were also screened for polymorphism in sorghum. Length polymorphisms among amplification products were detected with 15 of these primer pairs, yielding diversity values ranging from 0.2 to 0.8 with an average diversity of 0.56. These primer pairs are now available for use as markers in crop improvement and conservation efforts.  相似文献   

17.
Microbial diversity is typically characterized by clustering ribosomal RNA (SSU-rRNA) sequences into operational taxonomic units (OTUs). Targeted sequencing of environmental SSU-rRNA markers via PCR may fail to detect OTUs due to biases in priming and amplification. Analysis of shotgun sequenced environmental DNA, known as metagenomics, avoids amplification bias but generates fragmentary, non-overlapping sequence reads that cannot be clustered by existing OTU-finding methods. To circumvent these limitations, we developed PhylOTU, a computational workflow that identifies OTUs from metagenomic SSU-rRNA sequence data through the use of phylogenetic principles and probabilistic sequence profiles. Using simulated metagenomic data, we quantified the accuracy with which PhylOTU clusters reads into OTUs. Comparisons of PCR and shotgun sequenced SSU-rRNA markers derived from the global open ocean revealed that while PCR libraries identify more OTUs per sequenced residue, metagenomic libraries recover a greater taxonomic diversity of OTUs. In addition, we discover novel species, genera and families in the metagenomic libraries, including OTUs from phyla missed by analysis of PCR sequences. Taken together, these results suggest that PhylOTU enables characterization of part of the biosphere currently hidden from PCR-based surveys of diversity?  相似文献   

18.
19.
Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1.4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic resolution to identify fungal species and strains, they do provide information on the diversity and dynamics of groups of related species in environmental samples with sufficient resolution to produce discrete bands which can be separated by TGGE. This combination of 18S-rDNA PCR amplification and TGGE community analysis should allow study of the diversity, composition, and dynamics of the fungal community in bulk soil and in the rhizosphere.  相似文献   

20.
We developed and tested a set of primers for amplification of a region of the 24S a-subunit rRNA genes (24S rDNA) specific to Kinetoplastida (Protozoa). The reverse primer was supplied with a GC rich region in the 5? end in order to make the PCR product suitable for analysis by denaturing gradient gel electrophoresis (DGGE). PCR product was obtained from all the kinetoplastids tested and no PCR product was obtained from any other Eukaryotes or Prokaryotes tested. It was possible to distinguish between all pure cultures of kinetoplastids by denaturing gradient gel electrophoresis in gels ranging from 20% to 60% denaturants. PCR-DGGE analysis of DNA purified from lake sediment revealed approximately 20 bands indicating high kinetoplastid diversity. Direct cloning and sequencing of 24S rDNA sequences retrieved from the lake sediment by PCR also showed high kinetoplastid diversity. Of 43 clones, 27 different sequences were found. Alignments and phylogenetic analysis showed that a majority of the sequences were most closely related to the Bodonidae. Four sequences were closer to the Trypanosomatidae, whereas three sequences fell outside both groups. The PCR-DGGE procedure developed in this study has been shown to be useful for distinguishing between different kinetoplastid species. Thus, it may be a useful tool for evaluating the genetic diversity of this group in environmental samples, e.g., as a result of perturbation. Another possible application of this method is in fast and accurate screening for the presence and identification of pathological parasitic Kinetoplastida from environmental samples and for diagnostics of human and animal infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号