首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twelve acid hydrolases, 4 near-neutral hydrolases and alkaline phosphatase were demonstrated in 0.34 M sucrose homogenates of Trypanosoma cruzi strain Y: p-nitrophenylphosphatase and α-naphthylphosphatase, with optimum pH at ? 6.0; α-galactosidase, β-galactosidase, β-glucosidase, N-acetyl-β-glucosaminidase, cathepsin A and peptidase I and III, with optimum pH between 5.0 and 6.0: and arylsulfatase cathepsin D, α-arabinase and α-mannosidase with optimum pH at ? 4.0 α-Glucosidase, gluccse-6-phosphatase and peptidase II had optimum pH at ? 7.0. β-Glycerophcsphatase had a broad pH-activity curve from 4.0 to 7.4, with maximum activity at pH 7.0. The main kinetic characteristics of these enzymes and their quantitative assay methods were studied. No activity was detected for α-fucosidase, β-xylosidase, β-glucuronidase, elaidate esterase. acid lipase, and alkaline phospho-diesterase.  相似文献   

2.
1. Nine acid hydrolases, cytochrome oxidase, alkaline phenylphosphatase and catalase were demonstrated in 0.25m-sucrose homogenates of newborn-rat calvaria. The acid hydrolases were: acid phenylphosphatase, acid beta-glycerophosphatase, beta-glucuronidase, beta-N-acetylglucosaminidase (beta-N-acetylaminodeoxyglucosidase), acid ribonuclease and acid deoxyribonuclease, showing optimum activity at about pH5; cathepsin, beta-galactosidase and hyaluronidase, with optimum activity at about pH3.6. 2. The main kinetic characters of these enzymes have been studied and methods for their quantitative assay have been worked out. The activities present in bone are given and compared with those found in liver. 3. Acid-phosphatase activity was assayed with phenyl phosphate and beta-glycerophosphate as substrates: activities with these two substrates appeared to be due to two different enzymes. Acid phenylphosphatase is particularly labile and is readily inactivated by various physical or chemical agents.  相似文献   

3.
Characteristics of lysosomes in the rat placental cells   总被引:1,自引:0,他引:1  
Six acid hydrolases, cytochrome oxidase, and alkaline phosphatase were demonstrated in 0.25 m sucrose homogenates of rat chorioallantoic placenta. The acid hydrolases were: acid phosphatase, β-glucuronidase, N-acetyl-β-glucosaminidase, β-galactosidase, and acid deoxyribonuclease, showing optimum activity near pH 4.5; cathepsin, with optimum activity near pH 3.6. The free acid hydrolases present in cytoplasmic extracts expressed 20–40% of their total activity. “Total” activity was defined as the enzyme activity observed in the presence of Triton X-100, while “free” activity denoted enzyme activity measured under similar assay conditions except in the presence of sucrose and absence of Triton X-100. The decreased activity or latency in the assays for the free activity of acid phosphatase, acid deoxyribonuclease, and cathepsin persisted after incubation at pH 5 and 37 ° up to an hour. In contrast, this latency did not persist after incubation of the β-glycosidases. Additionally, the free activity of all the designated enzymes of the cytoplasmic extract was in excess of the nonsedimentable activity observed.  相似文献   

4.
The oral spirochaete Treponema denticola ATCC 33520 was grown at a mean generation time of 10 h in anaerobic continuous culture in a serum- and carbohydrate-free medium at pH 7.0. The extracellular proteolytic activities of this spirochaete were then investigated by incubating washed cells with 68 2-naphthylamide derivatives of the Extended API System. Chymotrypsin-like, trypsin-like, elastase-like and iminopeptidase activities were demonstrated. The phenylalanine peptidase or chymotrypsin-like activity of T. denticola ATCC 33520, estimated with N-succinyl-L-phenylalanyl-L-leucyl-L-phenylalanine-thiobenzyl ester (SPLP) had a pH optimum at pH 8.5, a specific activity of 36.6 nmol min-1 (mg dry wt)-1 and was inhibited only slightly by HgCl2. The trypsin-like activity, estimated with benzoyl-DL-arginine-7-amido-4-methylcoumarin (BAMC), had a pH optimum at pH9, and a specific activity of 0.3 nmol min-1 (mg dry wt)-1; inhibition by HgCl2 indicated the involvement of active thiol groups. The activity should preferably be termed arginine peptidase activity, according to the carboxy-terminal amino acid of the test substrate. The extracellular proline peptidase activity, estimated with L-proline-7-amido-4-methylcoumarin. HBr (PRAMC), had an activity of 1.5 nmol min-1 (mg dry wt)-1, an optimum at pH 8.5 and the properties of a thiol protease. The main cell-bound and extracellular active peptidase activities of fast-growing cells of T. denticola ATCC 33520 are phenylalanine peptidase, proline peptidase, arginine peptidase and an oligopeptide-dependent alanine peptidase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Pillay CS  Dennison C 《Biological chemistry》2002,383(7-8):1199-1204
In order to test the hypothesis that the lysosomal cysteine protease cathepsin B may be redox regulated in vivo, cathepsin B activity and stability were measured in cysteine- and/or cystine-containing buffers. Cathepsin B activity in cysteine-containing buffers was similar at pH 6.0 and pH 7.0, over all thiol concentrations tested. In contrast, the stability of the enzyme was greater at pH 6.0 than at pH 7.0. This suggests that the enzyme's operational pH in vivo may be < pH 7.0. The activity of the enzyme was depressed in glutathione-containing buffers. When assessed in cysteine:cystine redox buffers (pH 6.0-7.0) cathepsin B was active over a broad redox potential range, suggesting that cathepsin B activity may not be redox regulated. However, at pH 7.0, the stability of cathepsin B decreased with increasing reduction potential and ambient cystine concentration. This suggests that the stability of the enzyme at neutral pH is dependent on redox potential, and on the presence of oxidising agents.  相似文献   

6.
The pH versus proteinase activity curve (casein or hemoglobin plus urea substrate) for homogenates of unfertilized Lytechinus eggs reveals two regions of maximum activity: one between pH 3.5 and 4.3, and another of far greater magnitude from pH 8.0 to 11.0. The two classes of proteinases can be separated on a sucrose density gradient. Both the acid and alkaline proteinases in homogenates prepared in isotonic monovalent salt solutions are remarkably stable at pH 7.4 and 0°C. Using synthetic peptide substrates, an enzyme with the specific esterase activity of chymotrypsin was demonstrated; this enzyme accounts for the major part of the proteinase activity at alkaline pH. In addition, an enzyme with specific esterase activity of trypsin was shown to be present, but of low activity. The proteinase activity at acid pH is largely due to an enzyme resembling cathepsin D. The data also suggest the presence of cathepsin B and cathepsin IV (or catheptic carboxypeptidase). When eggs are homogenized in isotonic NaCl plus KCl at pH 7.4, 0.02 M tris buffer at 0°C, all of the alkaline proteinase, and 85–90% of the acid proteinase activity is sedimented at 10,000 g. The presence of any proteinase activity in the supernatant phase represents an artifact of the preparative procedures used. The granules which possess the proteinase activity are contained entirely in the yolk fractions; and the acid proteinase is contained in a population of granules which sediment more readily than those which contain the alkaline proteinase. The acid proteinase resembles the lysosomal acid hydrolases in that it is readily released from the particulates; in contrast, the alkaline proteinase is bound relatively firmly. In contradistinction to reports in the literature, no changes in proteinase activity nor intracellular distribution could be detected following fertilization.  相似文献   

7.
1. Renin was purified 30 000-fold from rat kidneys by chromatography on DEAE-cellulose and SP-Sephadex, and by affinity chromatography on pepstatinyl-Sepharose. 2. The enzymatic properties of isorenin from rat brain, pseudorenin from hog spleen, cathepsin D from bovine spleen, and renin from rat kidneys were compared: Isorenin, pseudorenin and cathepsin D generate angiotensin from tetradecapeptide renin substrate with pH optima around 4.9, renin at 6.0. With sheep angiotensinogen as substrate, isorenin, pseudorenin and cathepsin D have similar pH profiles (pH optima at 3.9 and 5.5), in contrast to renin (pH optimum at 6.8). 3. The angiotensin-formation from tetradecapeptide by isorenin, pseudorenin and cathepsin D was inhibited by albumin, alpha-and beta-globulins. These 3 enzymes have acid protease activity at pH 3.2 with hemoglobin as the substrate. Renin is not inhibited by proteins and has no acid protease activity. 4. Renin generates angiotensin I from various angiotensinogens at least 100 000 times faster than isorenin, pseudorenin or cathepsin D, and 3000 000 times faster than isorenin when compared at pH 7.2 with rat angiotensinogen as substrate. 5. The 3 'non-renin' enzymes exhibit a high sensitivity to inhibition by pepstatin (Ki less than 5.10(-10) M), in contrast to renin (Ki approximately 6-10(-7) M), at pH 5.5. 6. It is concluded from the data that isorenin from rat brain and pseudorenin from hog spleen are closely related to, or identical with cathepsin D.  相似文献   

8.
A partially purified bovine cortical bone acid phosphatase, which shared similar characteristics with a class of acid phosphatase known as tartrate-resistant acid phosphatase, was found to dephosphorylate phosphotyrosine and phosphotyrosyl proteins, with little activity toward other phosphoamino acids or phosphoseryl histones. The pH optimum was about 5.5 with p-nitrophenyl phosphate as substrate but was about 6.0 with phosphotyrosine and about 7.0 with phosphotyrosyl histones. The apparent Km values for phosphotyrosyl histones (at pH 7.0) and phosphotyrosine (at pH 5.5) were about 300 nM phosphate group and 0.6 mM, respectively, The p-nitrophenyl phosphatase, phosphotyrosine phosphatase, and phosphotyrosyl protein phosphatase activities appear to be a single protein since these activities could not be separated by Sephacryl S-200, CM-Sepharose, or cellulose phosphate chromatographies, he ratio of these activities remained relatively constant throughout the purification procedure, each of these activities exhibited similar thermal stabilities and similar sensitivities to various effectors, and phosphotyrosine and p-nitrophenyl phosphate appeared to be alternative substrates for the acid phosphatase. Skeletal alkaline phosphatase was also capable of dephosphorylating phosphotyrosyl histones at pH 7.0, but the activity of that enzyme was about 20 times greater at pH 9.0 than at pH 7.0. Furthermore, the affinity of skeletal alkaline phosphatase for phosphotyrosyl proteins was low (estimated to be 0.2-0.4 mM), and its protein phosphatase activity was not specific for phosphotyrosyl proteins, since it also dephosphorylated phosphoseryl histones. In summary, these data suggested that skeletal acid phosphatase, rather than skeletal alkaline phosphatase, may act as phosphotyrosyl protein phosphatase under physiologically relevant conditions.  相似文献   

9.
1.1. Lysosome-enriched fractions were prepared by differential centrifugation of homogenates of luteinized rats ovaries. Acid phospholipase A activities were characterized with [U-14C]diacyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-[9,10-3H]- or [1-14C]oleoyl-sn-glycero-3-phosphocholine as substrates. Acid phospholipase A1 activity had properties similar to other hydrolases of lysosomal origin; subcellular distribution, latency and acidic pH optimum. Acid phospholipase A2 activity with similar characteristics was also tentatively identified. We were unable to exclude the possibility that the combined action of phospholipase A1 and lysophospholipase contributed to the release of acyl moieties from the 2-position of the synthetic substrates. 2. Lysophospholipase activity was present in the lysosome-enriched fractions. This activity had an alkaline pH optimum. 3. Phospholipase A1 and A2 activities solubilized from lysosome fractions by freeze-thawing were inhibited by Ca2+ and slightly activated by EDTA. A Ca2+- stimulated phospholipase A2 activity, with an alkaline pH optimum, remained in the particulate residue of freeze-thawed lysosome preparations. This activity is believed to represent mitochondrial contamination. 4. Activities of acid phospholipase A, as well as other acid hydrolases, increased approx. 1.5-fold between 1 and 4 days following induction of luteinizatin, suggesting a hormonal influence on lysosomal enzyme activities.  相似文献   

10.
Cathepsin S was detected in bovine kidney, spleen, lymph nodes and lung by immunochemical methods. The immunostaining of cathepsin S in kidney was concentrated to the cells of the proximal tubule, where the enzyme was present in cytoplasmic granules. The purification method for cathepsin S from bovine spleen involved (NH4)2SO4 fractionation, chromatography on CM-Sephadex C-50, gel filtration on Sephacryl S-200 and chromatofocusing (pH 8.0-6.0). The enzyme was partially destroyed by autolysis of the homogenate at pH 4.2. The isoelectric point of cathepsin S was 7.0. Cathepsin S was found to hydrolyse proteins at a similar rate to cathepsin L below pH 7.0. At pH values of 7.0-7.5 cathepsin S retained most of its activity, whereas cathepsin L was completely inactive.  相似文献   

11.
The objective of this study was to evaluate the effect of soluble carbohydrates (glucose, cellobiose), pH (6.0, 6.5, 7.0), and rumen microbial growth factors (VFA, vitamins) on biohydrogenation of linoleic acid (LA) by mixed rumen fungi. Addition of glucose or cellobiose to culture media slowed the rate of biohydrogenation;only 35-40% of LA was converted to conjugated linoleic acid (CLA) or vaccenic acid (VA) within 24 h of incubation, whereas in the control treatment, 100% of LA was converted within 24 h. Addition of VFA or vitamins did not affect biohydrogenation activity or CLA production. Culturing rumen fungi at pH 6.0 slowed biohydrogenation compared with pH 6.5 or 7.0. CLA production was reduced by pH 6.0 compared with control (pH 6.5), but was higher with pH 7.0. Biohydrogenation of LA to VA was complete within 72 h at pH 6.0, 24 h at pH 6.5, and 48 h at pH 7.0. It is concluded that optimum conditions for biohydrogenation of LA and for CLA production by rumen fungi were provided without addition of soluble carbohydrates, VFA or vitamins to the culture medium; optimum pH was 6.5 for biohydrogenation and 7.0 for CLA production.  相似文献   

12.
An insoluble preparation of rat liver cathepsin D was obtained by coupling the enzyme to Enzacryl Polyacetal (EPA-cathepsin) and to CNBr-activated Sepharose 4B. EPA-cathepsin was active toward the synthetic hexapeptides (Gly-Phe-Leu)2 and did not split hemoglobin. The optimum pH of splitting was displaced upward by 1.5 units to pH 5.0. The enzyme exhibited maximum activity at 60 degrees C. No appreciable loss of activity was seen on storage of the enzyme for 4 months or after repeated use of the preparations. Coupling of rat liver cathepsin D to activated Sepharose gave preparations active towards both protein and synthetic substrates. The preparations were totally inactive in acid media and exhibited maximum activity at pH 7.0, that is, under physiological conditions. Optimum temperature was 65 degrees. The specific activity of the preparations (pH 7.0, 65 degrees) was 60-110 percent that of the free enzyme in acid media. Proteolytic activity of the Sepharose-coupled cathepsin D was not inhibited by pepstatin, whereas that of the free enzyme was fully inhibited by this reagent. A sarcoma cathepsin, similar in some of its properties to the rat liver enzyme, was also coupled to CNBr-activated Sepharose 4B. The preparation split protein substrates at pH 7.0 and possessed enhanced thermostability. The enzymes fixed on Sepharose showed increased stability.  相似文献   

13.
An extracellular low temperature-active alkaline stable peptidase from Acinetobacter sp. MN 12 was purified to homogeneity with a purification fold of 9.8. The enzyme exhibited specific activity of 6,540 U/mg protein, with an apparent molecular weight of 35 kDa. The purified enzyme was active over broad range of temperature from 4 to 60 °C with optimum activity at 40 °C. The enzyme retained more than 75 % of activity over a broad range of pH (7.0–11.0) with optimum activity at pH 9.0. The purified peptidase was strongly inhibited by phenylmethylsulfonyl fluoride, giving an indication of serine type. The K m and V max for casein and gelatin were 0.3529, 2.03 mg/ml and 294.11, 384.61 μg/ml/min respectively. The peptidase was compatible with surfactants, oxidizing agents and commercial detergents, and effectively removed dried blood stains on cotton fabrics at low temperature ranging from 15 to 35 °C.  相似文献   

14.
15.
When the distribution profile of hydrolases in mycelial homogenates and culture filtrates of A. parasiticus and A. flavus was examined, six hydrolytic enzymes viz. N-acetyl-beta-glucosaminidase, aryl sulfatase, alkaline proteinase, cathepsin B, cathepsin D and aminopeptidase were detected in homogenate. The culture filtrates were devoid of any activity of these enzymes. The enzyme levels varied with the stage of incubation. The most abundant fungal exopeptidase showing preference for basic amino acid naphthylamides seems to be an aminopeptidase B. Incorporation of CEPA, an ethylene generating compound, stimulated the amino peptidase activity in the mycelium but inhibited the enzyme in vitro. The enzyme was also inhibited by different aflatoxins to varying degree. While aminopeptidase B was located intracellularly, a non-dialysable, heat-stable inhibitor of the enzyme was found to be secreted in the culture filtrate. This peptide inhibitor was however ineffective on the other enzymes.  相似文献   

16.
The pH optimum of rat liver phenylalanine hydroxylase is dependent on the structure of the cofactor employed and on the state of activation of the enzyme. The tetrahydrobiopterin-dependent activity of native phenylalanine hydroxylase has a pH optimum of about 8.5. In contrast, the 6,7-dimethyltetrahydropterin-dependent activity is highest at pH 7.0. Activation of phenylalanine hydroxylase either by preincubation with phenylalanine or by limited proteolysis results in a shift of the pH optimum of the tetrahydrobiopterin-dependent activity to pH 7.0. Activation of the enzyme has no effect on the optimal pH of the 6,7-dimethyltetrahydropterin-dependent activity. The different pH optimum of the tetrahydrobiopterin-dependent activity of native phenylalanine hydroxylase is due to a change in the properties of the enzyme when the pH is increased from pH 7 to 9.5. Phenylalanine hydroxylase at alkaline pH appears to be in an altered conformation that is very similar to that of the enzyme which has been activated by preincubation with phenylalanine as determined by changes in the intrinsic protein fluorescence spectrum of the enzyme. Furthermore, phenylalanine hydroxylase which has been preincubated at an alkaline pH in the absence of phenylalanine and subsequently assayed at pH 7.0 in the presence of phenylalanine shows an increase in tetrahydrobiopterin-dependent activity similar to that exhibited by the enzyme which has been activated by preincubation with phenylalanine at neutral pH. Activation of the enzyme also occurs when m-tyrosine or tryptophan replace phenylalanine in the assay mixture. The predominant cause of the increase in activity of the enzyme immediately following preincubation at alkaline pH appears to be the increase in the rate of activation by the amino acid substrate. However, in the absence of substrate activation, phenylalanine hydroxylase preincubated at alkaline pH displays an approximately 2-fold greater intrinsic activity than the native enzyme.  相似文献   

17.
We studied the dependence of activity and stability of proteolytic enzymes in salmon roe on pH and temperature. The activity of proteolytic enzymes in roe was primarily determined by proteinases. These enzymes were active at acid pH and had an optimum of 3.6. A study of subclasses of proteolytic enzymes in salmon roe and the published data suggest that the activity of proteinases may be related to the presence of aspartyl proteinases (cathepsin D). Serine proteinases and metalloenzymes were not found in roe. The activity of cysteine proteinases was low. The proposed conditions of pasteurization favored the complete inactivation of salmon roe at pH 6.0–6.4.  相似文献   

18.
T Fox  E de Miguel  J S Mort  A C Storer 《Biochemistry》1992,31(50):12571-12576
A peptide (PCB1) corresponding to the proregion of the rat cysteine protease cathepsin B was synthesized and its ability to inhibit cathepsin B activity investigated. PCB1 was found to be a potent inhibitor of mature cathepsin B at pH 6.0, yielding a Ki = 0.4 nM. This inhibition obeyed slow-binding kinetics and occurred as a one-step process with a k1 = 5.2 x 10(5) M-1 s-1 and a k2 = 2.2 x 10(-4) s-1. On dropping from pH 6.0 to 4.7, Ki increased markedly, and whereas k1 remained essentially unchanged, k2 increased to 4.5 x 10(-3) s-1. Thus, the increase in Ki at lower pH is due primarily to an increased dissociation rate for the cathepsin B/PCB1 complex. At pH 4.0, the inhibition was 160-fold weaker (Ki = 64 nM) than at pH 6.0, and the propeptide appeared to behave as a classical competitive inhibitor rather than a slow-binding inhibitor. Incubation of cathepsin B with a 10-fold excess of PCB1 overnight at pH 4.0 resulted in extensive cleavage of the propetide whereas no cleavage occurred at pH 6.0, consistent with the formation of a tight complex between cathepsin B and PCB1 at the higher pH. The synthetic propeptide of cathepsin B was found to be a much weaker inhibitor of papain, a structurally similar cysteine protease, and no pH dependence was observed. Inhibition constants of 2.8 and 5.6 microM were obtained for papain inhibition by PCB1 at pH 4.0 and 6.0, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Human cathepsin H.   总被引:12,自引:7,他引:5       下载免费PDF全文
Cathepsin H was purified from human liver by a method involving autolysis and acetone fractionation, and chromatography on DEAE-cellulose, Ultrogel AcA 54, hydroxyapatite and concanavalin A-Sepharose. The procedure allowed for the simultaneous isolation of cathepsin B and cathepsin D. Cathepsin H was shown to consist of a single polypeptide chain of 28 000 mol.wt., and affinity for concanavalin A-Sepharose indicated that it was a glycoprotein. The enzyme existed in multiple isoelectric forms, the two major forms having pI values of 6.0 and 6.4; it hydrolysed azocasein (pH optimum 5.5), benzoylarginine 2-naphthylamide (Ba-Arg-NNap), leucyl 2-naphthylamide (Arg-NNap), (pH optimum 6.8). Arg-NNap and Arg-NMec, unlike Bz-Arg-NNap-, were not hydrolysed by human cathepsin B. Cathepsin H was similar to cathepsin B in being irreversibly inactivated by exposure to alkaline pH. Sensitivity to chemical inhibitors by 1 microM-leupeptin, which gave essentially complete inhibition of the other lysosomal cysteine proteinases, cathepsins B and L.  相似文献   

20.
S K Das  A B Banerjee 《Sabouraudia》1977,15(3):313-323
Trichophyton rubrum cells contain lipase, phospholipases A and B and acyl CoA lysolecithin acyl transferase activities. This dermatophyte excretes lipase and phospholipase A into the growth medium when cultivated in Sabouraud's broth. Extracellular lipase has optimum activity at pH 8.0 whereas the intracellular lipase is maximally active at pH 8.0 whereas the intracellular lipase is maximally active at pH 7.0. The optimum pH of phospholipase A and B activities which are localized in 15000 g sedimentable cell fragments are 7.0 and 6.0 respectively. Supernatant obtained after removal of 1,005,000 g sedimentable fragments from cell extract contains acyl CoA lysolecithin acyl transferase which requires ATP, CoA, Mg2+ and an unsaturated fatty acid for its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号