首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The bacterial toxins, choleragen and pertussis toxin, inhibit the light-stimulated GTPase activity of bovine retinal rod outer segments by catalysing the ADP-ribosylation of the alpha-subunit (T alpha) of transducin [Abood, Hurley, Pappone, Bourne & Stryer (1982) J. Biol. Chem. 257, 10540-10543; Van Dop, Yamanaka, Steinberg, Sekura, Manclark, Stryer & Bourne (1984) J. Biol. Chem. 259, 23-26]. Incubation of retinal rod outer segments with NAD+ and a purified NAD+:arginine ADP-ribosyltransferase from turkey erythrocytes resulted in approx. 60% inhibition of GTPase activity. Inhibition was dependent on both enzyme and NAD+, and was potentiated by the non-hydrolysable GTP analogues guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) and guanosine 5'-[beta gamma-methylene]triphosphate (p[CH2]ppG). The transferase ADP-ribosylated both the T alpha and T beta subunits of purified transducin. T alpha (39 kDa), after ADP-ribosylation, migrated as two distinct peptides with molecular masses of 42 kDa and 46 kDa on SDS/polyacrylamide-gel electrophoresis. T beta (36 kDa), after ADP-ribosylation, migrated as a 38 kDa peptide. With purified transducin subunits, it was observed that the GTPase activity of ADP-ribosylated T alpha, reconstituted with unmodified T beta gamma and photolysed rhodopsin, was decreased by 80%; conversely, reconstitution of T alpha with ADP-ribosyl-T beta gamma resulted in only a 19% inhibition of GTPase. Thus ADP-ribosylation of T alpha, the transducin subunit that contains the guanine nucleotide-binding site, has more dramatic effects on GTPase activity than does modification of the critical 'helper subunits' T beta gamma. To elucidate the mechanism of GTPase inhibition by transferase, we studied the effect of ADP-ribosylation on p[NH]pp[3H]G binding to transducin. It was shown previously that modification of transducin by choleragen, which like transferase ADP-ribosylates arginine residues, did not affect guanine nucleotide binding. ADP-ribosylation by the transferase, however, decreased p[NH]pp[3H]G binding, consistent with the hypothesis that choleragen and transferase inhibit GTPase by different mechanisms.  相似文献   

2.
The visual excitation system of the retinal rod outer segments and the hormone-sensitive adenylate cyclase complex are regulated through guanine nucleotide-binding proteins, transducin in the former and inhibitory and stimulatory regulatory components, Gi and Gs, in the latter. These proteins are functionally and structurally similar; all are heterotrimers composed of alpha, beta, and gamma subunits and exhibit guanosine triphosphatase activity stimulated by light-activated rhodopsin or the agonist-receptor complex. Adenylate cyclase can be stimulated by vanadate, which, like NaF, probably acts through Gs. Effects of vanadate on the function of a guanine nucleotide-binding protein were investigated in a reconstituted model system consisting of purified transducin subunits (T alpha, T beta gamma) and rhodopsin in phosphatidylcholine vesicles. Vanadate (decameric) inhibited [3H]GTP binding to T alpha and noncompetitively inhibited GTP hydrolysis in a concentration-dependent manner with maximal inhibition of approximately 90% at 3-5 mM. Vanadate also inhibited release of bound GDP but did not affect the rate of hydrolysis of bound GTP (single turnover rate), indicating that vanadate did not interfere with the intrinsic GTPase activity of T alpha. Binding of T alpha to rhodopsin and the ADP-ribosylation of T alpha by pertussis toxin, both of which are enhanced in the presence of T beta gamma, were inhibited by vanadate. These findings are consistent with the conclusion that vanadate can cause the dissociation of T alpha from T beta gamma, resulting in the inhibition of GDP-GTP exchange and thereby GTP hydrolysis. Adenylate cyclase activation could result from a similar effect of vanadate on Gs.  相似文献   

3.
The guanine nucleotide-binding proteins (G proteins), which transduce hormonal and light signals across the plasma membrane, are heterotrimers composed of alpha, beta, and gamma subunits. Activation of G proteins by guanine nucleotides is accompanied by dissociation of the heterotrimer: G + alpha.beta.gamma in equilibrium alpha G + beta.gamma. Brain contains several G proteins of which the most abundant are alpha 39.beta.gamma and alpha 41.beta.gamma. We have used proteolysis by trypsin to study the functional domains of the alpha subunits. In the presence of guanosine 5'-(3-O-thio)triphosphate, trypsin removes a 2-kDa peptide from the amino terminus of these proteins (Hurley, J. B., Simon, M. I., Teplow, D. B., Robishaw, J. D., and Gilman, A. G. (1984) Science 226, 860-862; Winslow, J. W., Van Amsterdam, J. R., and Neer, E. J. (1986) J. Biol. Chem. 261, 7571-7579). Tryptic cleavage does not affect the GTPase activity of the truncated molecule nor the apparent Km for GTP. However, removal of the 2-kDa amino-terminal peptide prevents association of the alpha subunits with beta.gamma. Since the apparent substrate for pertussis toxin-catalyzed ADP-ribosylation is the alpha.beta.gamma heterotrimer, the trypsin-cleaved alpha subunit is not a substrate for the toxin. Digestion of the carboxyl terminus of alpha 39 with carboxypeptidase A prevents ADP-ribosylation by pertussis toxin but does not interfere with the formation of alpha 39.beta.gamma heterotrimers. We do not yet know whether the amino-terminal region of alpha 39 interacts with beta gamma directly or whether it is necessary to maintain a conformation of alpha 39 which is required for heterotrimer formation. Further studies are needed to define the nature of the contracts between alpha and beta gamma subunits since understanding the structural basis for their reversible interaction is fundamental to understanding their function.  相似文献   

4.
V N Hingorani  L F Chang  Y K Ho 《Biochemistry》1989,28(18):7424-7432
The structure of the GTP-binding site of transducin, a signal-transducing G-protein involved in the visual excitation process, was studied by affinity labeling. Radioactive GTP analogues with reactive groups attached to different moieties of the GTP molecule were obtained and include 8-azido-GTP, P3-(4-azidoanilino)-P1-5'-GTP (AA-GTP), 5'-[p-(fluorosulfonyl)benzoyl]guanosine (FSBG), 3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)-GTP (ANPAP-GTP), the 2',3'-dialdehyde derivative of GTP (oGTP), and a bifunctional cross-linking analogue, 8-azido-P3-(4-azidoanilino)-P1-5'-GTP (8-azido-AA-GTP). With the exception of FSBG, all of the analogues were found to bind to transducin specifically and serve as a cofactor to activate the retinal cGMP cascade or act as a competitive inhibitor for the GTPase activity of transducin. The labeling sites of these analogues were localized by tryptic peptide mapping. ANPAP-GTP and oGTP were unable to covalently modify transducin, suggesting that the 2'- and 3'-hydroxy groups on the ribose ring of GTP are not in direct contact with the protein. AA-GTP only labeled the T alpha subunit of transducin and was localized on the 21-kDa tryptic fragment of T alpha. This indicates that the phosphate moiety of the bound GTP is in direct contact with this peptide. On the other hand, 8-azido-GTP labeled both the T alpha and T beta gamma subunits of transducin. The labeling on T alpha was on the 12-kDa tryptic fragment, suggesting that the guanine ring binding site is composed of a different peptide fragment than the phosphate binding region. Treatment with the bifunctional analogue 8-azido-AA-GTP generated the cross-linked products of T alpha and T beta gamma. This observation implies that the guanine ring of the bound GTP on T alpha could be in close proximity with T beta gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Work in several laboratories has shown that Gi, the inhibitory guanyl nucleotide-binding protein of the adenylate cyclase system, is similar in many ways to transducin, the guanyl nucleotide-binding protein of the retinal light-activated cGMP phosphodiesterase system. Separated subunits of purified transducin, T alpha (approximately 39 kDa) and T beta gamma (approximately 35 and approximately 10 kDa), do not exhibit GTPase activity; GTPase activity is observed when the subunits are combined in the presence of rhodopsin ( Fung , B. K.-K. (1983) J. Biol. Chem. 258, 10495-10502). Subunits of Gi, Gi alpha (approximately 41 kDa), and Gi beta gamma (approximately 35 and approximately 10 kDa) were prepared from rabbit liver membranes. It was found that Gi beta gamma could replace T beta gamma in reconstituting the rhodopsin-stimulated GTPase activity of T alpha. Gi alpha exhibited rhodopsin-stimulated GTPase activity when reconstituted with Gi beta gamma or T beta gamma. GTPase activity was a function of Gi alpha concentration when Gi beta gamma or T beta gamma was constant, and the GTPase activity of a given amount of Gi alpha was dependent on Gi beta gamma concentration. These studies demonstrate that the GTPase activity of Gi resides in Gi alpha and further establish that Gi alpha and Gi beta gamma are functionally analogous to T alpha and T beta gamma, respectively.  相似文献   

6.
A panel of monoclonal antibodies has been developed against the T alpha, T beta and T gamma subunits of bovine transducin. Two anti-T alpha antibodies from this panel (TF15 and TF16) and a third one (4A) against frog T alpha (Witt, P. L., Hamm, H. E., and Bownds, M. D. (1984) J. Gen. Physiol. 84, 251-263) were characterized. Each of these monoclonal antibodies recognizes a different region of T alpha and has a specific effect on the function of transducin. The binding of TF15 is reversibly enhanced by treating T alpha with either 1 M guanidinium chloride or, to a smaller extent, by the removal of bound guanine nucleotide. Its epitope is located in a 12-kDa tryptic fragment containing the binding site for the guanine moiety of GTP. Taken together, these results support previous observations that the conformation of T alpha is modulated by the occupancy of the guanine nucleotide binding site. In contrast to TF15, TF16 recognizes only the native form of T alpha. Its epitope resides within the central portion of the T alpha molecule. While T alpha-bound TF16 does not inhibit either pertussis toxin-catalyzed ADP-ribosylation, rhodopsin binding, or transducin subunit interaction, it blocks both the light-activated uptake of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and the GTP-dependent elution of transducin from photolyzed rhodopsin. These effects are unlikely to be caused by the occupation of the guanine nucleotide binding site by TF16 because this antibody quantitatively precipitates T alpha-GTP gamma S. We propose that bound TF16 locks T alpha in a conformation that prevents the entrance of guanine nucleotide and favors T beta gamma association. In contrast to TF16, the epitope of 4A was mapped to the amino-terminal region of T alpha. This monoclonal antibody blocks pertussis toxin-catalyzed ADP-ribosylation, GTP gamma S uptake, and T alpha-T beta gamma association. Moreover, the binding site for 4A becomes inaccessible when transducin binds to photolyzed rhodopsin. These results suggest that the inhibitory effects of 4A are due to a simultaneous steric blockage of both the interaction of T alpha with T beta gamma and their binding to photolyzed rhodopsin. The results obtained from these studies are correlated with the structure and function of T alpha.  相似文献   

7.
Transducin, the guanyl nucleotide-binding protein of the retinal light-activated cGMP phosphodiesterase system, is structurally and functionally similar to the inhibitory and stimulatory guanyl nucleotide-binding proteins, Gi and Gs, of the adenylate cyclase complex. All are heterotrimers composed of alpha, beta, and gamma subunits. Gs and Gi can be activated by NaF with AlCl3 as well as by agonists acting through specific receptors. The effects of NaF and AlCl3 on transducin were investigated in a reconstituted system consisting of the purified subunits of transducin (T alpha, T beta, gamma) and rhodopsin. NaF noncompetitively inhibited the GTPase activity of T alpha in a concentration- and time-dependent manner. Inhibition by NaF was enhanced synergistically by AlCl3 which alone only slightly inhibited GTPase activity. None of the other anions tested reproduced the effect of fluoride. Fluoride inhibited [3H]guanosine 5'-(beta, gamma-imido)triphosphate binding to T alpha and release of bound GDP. The ADP-ribosylation of T alpha by pertussis toxin and binding of T alpha to rhodopsin, both of which are enhanced in the presence of T beta gamma, were inhibited by NaF and AlCl3. These findings are consistent with the hypothesis that fluoride enhances the dissociation of T alpha from T beta gamma, resulting in the inhibition of GTP-GDP exchange, and therefore, GTP hydrolysis.  相似文献   

8.
Transducin, the guanine nucleotide-binding regulatory protein in rod outer segments, is a heterotrimer consisting of alpha-, beta-, and gamma-subunits. Activation of the photoreceptor, rhodopsin, by light, results in activation of transducin which cleaves to form transducin alpha. GTP and a complex of beta gamma-subunits. We have investigated the point(s) of contact between the subunits of transducin by analyzing for the formation of intersubunit disulfide bond(s) in the presence of copper phenanthroline. The formation of a new species with an apparent molecular mass of 43 kDa was observed which had resulted from the formation of a disulfide bond between the beta- and gamma-subunits. The amino acid residues participating in the disulfide bond were identified as Cys-25 in the beta-subunit and Cys-36 and/or Cys-37 in the gamma-subunit. Thus, these cysteine residues and, probably, some of the adjacent amino acid residues form a point of contact between the beta- and gamma-subunits of transducin in the stable complex.  相似文献   

9.
In vitro synthesis of G protein beta gamma dimers   总被引:8,自引:0,他引:8  
The guanine nucleotide-binding proteins (G proteins), which play a central role in coupling membrane-bound receptors to intracellular effectors, are heterotrimers composed of alpha, beta, and gamma subunits. The beta and gamma subunits form a functional monomer that does not appear to separate under physiological conditions. This has made it difficult to differentiate the individual roles of beta and gamma subunits in signal transduction. To characterize the individual subunits, the 36-kDa beta subunit (beta 1), brain gamma (gamma 2), and transducin gamma (gamma t) were translated in vitro in a rabbit reticulocyte lysate system. Hydrodynamic studies and tryptic proteolysis were used to compare the physical properties of the in vitro translation products with those of beta gamma dimers purified from bovine brain. The hydrodynamic studies indicate that, without gamma subunits, the beta subunits are not stable but tend to aggregate into high molecular weight complexes. When beta and gamma subunits were co-translated, stable beta gamma dimers formed that bound alpha 0 in a guanine nucleotide-dependent manner. The beta gamma dimers were less hydrophobic than those purified from bovine brain. This may reflect a lack of post-translational modification in the reticulocyte lysate or other differences between the in vitro translation products and the purified beta gamma. When beta and gamma were translated separately and then mixed, beta gamma dimers also formed. Analysis of in vitro translated beta gamma subunits will provide ways to assess the function of these subunits and to determine the structural requirements for beta gamma formation.  相似文献   

10.
Both the light-stimulated cGMP phosphodiesterase of retinal rod outer segments (ROS) and hormone-stimulated adenylate cyclase are regulated by guanine nucleotide-binding regulatory proteins (N). Transducin serves as the signal-carrying regulatory protein in ROS, and the N protein (also called G or G/F) performs this role in the adenylate cyclase system. The GTP form of these regulatory proteins activates the corresponding enzyme, whereas the GDP form does not. Both transducin and the N protein possess a GTPase activity that restores the regulatory protein to the unstimulated state. Cholera enterotoxin catalyzes the transfer of ADP-ribose from NAD+ to the N protein, which inhibits its GTPase activity and activates adenylate cyclase. We report here that the toxin also catalyzes ADP-ribosylation of the alpha-subunit of transducin in ROS membranes. This modification of the guanine nucleotide-binding subunit of transducin is markedly enhanced by the bleaching of rhodopsin and by the addition of guanosine-5'-(beta, gamma-imino)triphosphate. In contrast, GDP, GTP, and guanosine-5'-(3-O)thiotriphosphate inhibit the reaction, while GMP and ATP have no effect. Under optimal conditions, toxin catalyzes labeling of 0.7 mol of the alpha-subunit of transducin/mol of bound [3H]guanosine-5'-(beta, gamma-imido)triphosphate and causes 70% inhibition of the light-dependent GTPase activity of transducin in ROS. These results indicate close functional homology between transducin of ROS and the N protein of adenylate cyclase.  相似文献   

11.
Modification of bovine brain G proteins by an N-hydroxysuccinimide ester of biotin has been studied. In the presence of GDP, but in the absence of Mg2+, neither guanine nucleotide binding nor GTPase activity of the protein was altered by modification using less than 1.25 mM biotin derivative with 1 mg/ml G protein. Under these conditions the alpha subunit was modified more extensively than the beta and gamma subunits. However, biotinyl-alpha was less readily bound to streptavidin-agarose than was the less modified beta subunit. Biotinyl-beta gamma was isolated from the modified, intact G protein and further characterized to determine if biotinylation alters its functional properties. Isolated biotinyl-beta gamma and unmodified beta gamma were equivalent based upon: 1) inhibition of the S49 cell membrane adenylyl cyclase, 2) changes in hydrodynamic parameters after being recombined with isolated alpha and treated with guanine nucleotides or complexes of fluoride and aluminum, and 3) competition for isolated alpha binding to biotinyl-beta gamma immobilized previously on streptavidin-agarose. Biotinyl-beta gamma prebound to streptavidin-agarose was 70-100% functional, based upon binding of isolated alpha subunits. Estimates of the affinity of alpha binding to biotinyl-beta gamma indicate that bovine brain alpha 41 has a 10-15-fold higher affinity for beta gamma than does alpha 39. Nonhydrolyzable guanine nucleotides and complexes of fluoride and aluminum decreased binding of either alpha 39 or alpha 41 to biotinyl-beta gamma, and these effects were dependent upon the amount of Mg2+ present. GTP decreased binding of alpha 39, but not alpha 41, to biotinyl-beta gamma. These results indicate that GTP can affect G protein subunit interactions and that its effects do not necessarily require an intact membrane environment or the participation of activating receptors or other membrane-associated proteins. They further indicate that biotinylation of beta gamma does not alter its functional properties and that it can be used for studying G protein subunit interactions.  相似文献   

12.
In bullfrog (Rana catesbiana) rods the activity of cyclic GMP (cGMP) phosphodiesterase was stimulated 10 times by washing disc membranes with an isotonic, GTP-containing buffer. This stimulation was maintained following hydrolysis of GTP and after removal of guanine nucleotides. At least 60-70% of the inhibitory gamma subunit of cGMP phosphodiesterase (P gamma) was physically released from membranes by these washing procedures. When cGMP phosphodiesterase was activated by a hydrolysis-resistant GTP analogue, P gamma was found in the supernatant complexed with the transducin alpha subunit (T alpha) using three chromatography systems. When GTP was used to activate cGMP phosphodiesterase, P gamma was also found in the supernatant complexed with GDP.T alpha. This complex was also isolated using the same three chromatography systems, indicating that P gamma remained tightly bound to T alpha even after bound GTP was hydrolyzed. Interaction with the beta,gamma subunits of transducin, which remained associated with disc membranes, was required for the release of P gamma from the GDP.T alpha complex, which resulted in the deactivation of active cGMP phosphodiesterase. We conclude that during activation of cGMP phosphodiesterase, P gamma is complexed with T alpha (both GTP and GDP forms) in the supernatant and that, following GTP hydrolysis, beta,gamma subunits of transducin are necessary for the release of P gamma from the complex and the resulting inactivation of cGMP phosphodiesterase in frog photoreceptors.  相似文献   

13.
Ns and Ni, the regulatory proteins affecting adenylyl cyclase, and transducin, the guanine nucleotide-binding protein from rod outer segments of the eye, are structurally and functionally related proteins. Of these, the alpha subunits are between 39 and 42 kDa in mass, beta subunits are all of 35 kDa in mass, and gamma subunits are much smaller, of approximately 5-8 kDa in mass. We compared, by two-dimensional peptide mapping of iodinated peptides, the beta and gamma subunits of human erythrocyte Ns, human erythrocyte Ni, the beta gamma complex derived from purification of bovine brain N proteins, and frog and bovine eye transducins. We found that gamma subunits in human erythrocyte Ns and Ni and in bovine brain beta gamma complex are indistinguishable by this approach. In contrast, gamma subunits associated with frog and bovine transducin differed markedly between each other and from N protein-associated gamma. beta subunits, on the other hand, yielded essentially indistinguishable peptide maps regardless of whether derived from N proteins or from transducin and regardless also of species of origin: human versus bovine versus frog. These results suggest that the gamma subunit may impart functional heterogeneity of this family of proteins which is evident in the N proteins on the one hand and the transducin proteins on the other.  相似文献   

14.
P M Guy  J G Koland  R A Cerione 《Biochemistry》1990,29(30):6954-6964
The intrinsic tryptophan fluorescence of the alpha subunit of transducin (alpha T) has been shown to be sensitive to the binding of guanine nucleotides, with the fluorescence being enhanced by as much as 2-fold upon the binding of GTP or nonhydrolyzable GTP analogues [cf. Phillips and Cerione (1988) J. Biol. Chem. 263, 15498-15505]. In this work, we have used these fluorescence changes to analyze the kinetics for the activation (GTP binding)-deactivation (GTPase) cycle of transducin in a well-defined reconstituted phospholipid vesicle system containing purified rhodopsin and the alpha T and beta gamma T subunits of the retinal GTP-binding protein. Both the rate and the extent of the GTP-induced fluorescence enhancement are dependent on [rhodopsin], while only the rate (and not the extent) of the GTP gamma S-induced enhancement is dependent on the levels of rhodopsin. Comparisons of the fluorescence enhancements elicited by GTP gamma S and GTP indicate that the GTP gamma S-induced enhancements directly reflect the GTP gamma S-binding event while the GTP-induced enhancements represent a composite of the GTP-binding and GTP hydrolysis events. At high [rhodopsin], the rates for GTP binding and GTPase are sufficiently different such that the GTP-induced enhancement essentially reflects GTP binding. A fluorescence decay, which always follows the GTP-induced enhancement, directly reflects the GTP hydrolytic event. The rate of the fluorescence decay matches the rate of [32P]Pi production due to [gamma-32P]GTP hydrolysis, and the decay is immediately reversed by rechallenging with GTP. The GTP-induced fluorescence changes (i.e., the enhancement and ensuing decay) could be fit to a simple model describing the activation-deactivation cycle of transducin. The results of this modeling suggest the following points: (1) the dependency of the activation-deactivation cycle on [rhodopsin] can be described by a simple dose response profile; (2) the rate of the rhodopsin-stimulated activation of multiple alpha T(GDP) molecules is dependent on [rhodopsin] and when [alpha T] greater than [rhodopsin], the activation of the total alpha T pool may be limited by the rate of dissociation of rhodopsin from the activated alpha T(GTP) species; and (3) under conditions of optimal rhodopsin-alpha T coupling (i.e., high [rhodopsin]), the cycle is limited by GTP hydrolysis with the rate of Pi release, or any ensuing conformational change, being at least as fast as the hydrolytic event.  相似文献   

15.
In an attempt to study the mechanisms of action of membrane-bound adenylate cyclase, we have applied to rat brain synaptosomal membranes antibodies raised against purified bovine transducin (T) beta gamma subunits. The antibodies recognized one 36-kDa protein in Western blots of the membranes. Adenylate cyclase activation by GTP non-hydrolyzable analogues was greatly decreased in immune, as compared to preimmune, antibody-treated membranes, whereas the enzyme basal activity was unaffected by both types of antibodies. The inhibition of forskolin-stimulated adenylate cyclase by guanine 5'-(beta, gamma-imino)triphosphate (Gpp-(NH)p) was decreased in membranes preincubated with immune, but not preimmune, antibodies. Anti-T beta antibodies moderately decreased the extent of subsequent adenylate cyclase activation by forskolin, while not affecting activation by Al3+/F-. The enzyme activation by Gpp(NH)p in untreated membranes remained the same upon further incubation in the presence of either type of antibodies. Such results were consistent with the decreased exchange of guanine nucleotides which occurred in membrane treated with immune, but not preimmune antibodies, upon addition of GTP. The blockade of the regulation of adenylate cyclase by Gpp(NH)p observed in membranes pretreated by anti-T beta antibodies thus appears to be caused by the impairment of the guanine nucleotide exchange occurring on Gs alpha subunits. The G beta subunits in the adenylate cyclase complex seem to be instrumental in the guanine nucleotide exchange on G alpha subunits, just as T beta subunits are in the transducin complex.  相似文献   

16.
Transducin, a guanine nucleotide-binding protein consisting of two subunits (T alpha and T beta gamma), mediates the signal coupling between rhodopsin and a membrane-bound cyclic GMP phosphodiesterase in retinal rod outer segments. The T alpha subunit is an activator of the phosphodiesterase, and the function of the T beta gamma subunit is to physically link T alpha with photolyzed rhodopsin. In this study, the mechanism of cholera toxin-catalyzed ADP-ribosylation of T alpha has been examined in a reconstituted system consisting of purified transducin and stripped rod outer segment membranes. Limited proteolysis of the labeled T alpha with trypsin indicated that the inserted ADP-ribose is located exclusively on a single proteolytic fragment with an apparent molecular weight of 23,000. Maximal incorporation of ADP-ribose was achieved when guanosine 5'-(beta, gamma-imido)triphosphate (Gpp(NH)p) and T beta gamma were present at concentrations equal to that of T alpha and when rhodopsin was continuously irradiated with visible light in the 400-500 nm region. The stimulating effect of illumination was related to the direct interaction of the retinal chromophore with opsin. These findings strongly suggest that a transient protein complex consisting of T alpha X Gpp(NH)p, T beta gamma, and a photointermediate of rhodopsin is the required substrate for cholera toxin. Single turnover kinetic measurements demonstrated that the ADP-ribosylation of T alpha coincided with the appearance of a population of transducin molecules having a very slow rate of GTP hydrolysis. The hydrolysis rate of the bound GTP for this population was 1.1 X 10(-3)/s, which was 22-fold slower than the rate for the unmodified transducin.  相似文献   

17.
In the previous paper, we reported the identification of a 74-kDa G-protein that co-purifies with the alpha 1-adrenergic receptor following ternary complex formation. We report here on the purification and characterization of this 74-kDa G-protein (termed Gh) isolated de novo from rat liver membranes. After solubilization of rat liver membranes with the detergent sucrose monolaurate, Gh was isolated by sequential chromatography using heparin-agarose, Ultrogel AcA 34, hydroxylapatite, and heptylamine-Sepharose columns. The protein, thus isolated, is not a substrate for cholera or pertussis toxin but displays GTPase activity (turnover number, 3-5 min-1) and high-affinity guanosine 5'-O-3-thiotriphosphate (GTP gamma S) binding (half-maximal binding = 0.25-0.3 microM), which is Mg2(+)-dependent and saturable. The relative order of nucleotide binding by Gh is GTP gamma S greater than GTP greater than GDP greater than ITP much much greater than ATP greater than or equal to adenyl-5'-yl imidodiphosphate, which is similar to that observed for other heterotrimeric G-proteins involved in receptor signaling. Moreover, specific alpha 1-agonist-stimulated GTPase (turnover number, 10-15 min-1) and GTP gamma S binding activity could be demonstrated after reconstitution of purified Gh with partially purified alpha 1-adrenergic receptor into phospholipid vesicles. The alpha 1-agonist stimulation of GTP gamma S binding and GTPase activity was inhibited by the alpha-antagonist phentolamine. A 50-kDa protein co-purifies with the 74-kDa G-protein. This protein does not bind guanine nucleotides and may be a subunit (beta-subunit) of Gh. These findings indicate that Gh is a G-protein that functionally couples to the alpha 1-adrenergic receptor.  相似文献   

18.
S C Tsai  R Adamik  Y Kanaho  J L Halpern  J Moss 《Biochemistry》1987,26(15):4728-4733
Guanyl nucleotide binding proteins couple agonist interaction with cell-surface receptors to an intracellular enzymatic response. In the adenylate cyclase system, inhibitory and stimulatory effects are mediated through guanyl nucleotide binding proteins, Gi and Gs, respectively. In the visual excitation complex, the photon receptor rhodopsin is linked to its target, cGMP phosphodiesterase, through transducin (Gt). Bovine brain contains another guanyl nucleotide binding protein, Go. The proteins are heterotrimers of alpha, beta, and gamma subunits; the alpha subunits catalyze receptor-stimulated GTP hydrolysis. To examine the interaction of Go alpha with beta gamma subunits and rhodopsin, the proteins were reconstituted in phosphatidylcholine vesicles. The GTPase activity of Go alpha purified from bovine brain was stimulated by photolyzed, but not dark, rhodopsin and was enhanced by bovine retinal Gt beta gamma or by rabbit liver G beta gamma. Go alpha in the presence of G beta gamma is a substrate for pertussis toxin catalyzed ADP-ribosylation; the modification was inhibited by photolyzed rhodopsin and enhanced by guanosine 5'-O-(2-thiodiphosphate). ADP-Ribosylation of Go alpha by pertussis toxin inhibited photolyzed rhodopsin-stimulated, but not basal, GTPase activity. It would appear from this and prior studies that Go alpha is similar to Gt alpha and Gi alpha; all three proteins exhibit photolyzed rhodopsin-stimulated GTPase activity, are pertussis toxin substrates, and functionally couple to Gt beta gamma. Go alpha (39K) can be distinguished from Gi alpha (41K) but not from Gt alpha (39K) by molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Mg2+ interacts with the alpha subunits of guanine nucleotide-binding regulatory proteins (G proteins) in the presence of guanosine-5'-[gamma-thio]triphosphate (GTP-gamma S) to form a highly fluorescent complex from which nucleotide dissociates very slowly. The apparent Kd for interaction of G alpha X GTP gamma S with Mg2+ is approximately 5 nM, similar to the Km for G protein GTPase activity X G beta gamma increases the rate of dissociation of GTP gamma S from G alpha X GTP gamma S or G alpha X GTP gamma S X Mg2+ at low concentrations of Mg2+. When the concentration of Mg2+ exceeds 1 mM, G beta gamma dissociates from G beta gamma X G alpha X GTP gamma S X Mg2+. Compared with the dramatic effect of Mg2+ on binding of GTP gamma S to G alpha, the metal has relatively little effect on the binding of GDP. However, G beta gamma increases the affinity of G alpha for GDP by more than 100-fold. High concentrations of Mg2+ promote the dissociation of GDP from G beta gamma X G alpha X GDP, apparently without causing subunit dissociation. The steady-state rate of GTP hydrolysis is strictly correlated with the rate of dissociation of GDP from G alpha under all conditions examined. Thus, there are at least two sites for interaction of Mg2+ with G protein-nucleotide complexes. Furthermore, binding of G beta gamma and GTP gamma S to G alpha is negatively cooperative, while the binding interaction between G beta gamma and GDP is strongly positive.  相似文献   

20.
The bifunctional reagents para-phenyldimaleimide and maleimidobenzoyl-N-hydroxysuccinimide ester were used to chemically cross-link the subunits of the transducin and cGMP phosphodiesterase (PDE) complexes of bovine rod photoreceptor cells. The cross-linked products were identified by Western immunoblotting using antisera against purified subunits of transducin (T alpha and T beta gamma) and PDE. Oligomeric cross-linked products of transducin subunits as large as (T alpha beta gamma)3 were observed in the latent form of transducin with bound GDP. In addition to the expected T alpha beta and T beta gamma cross-linked products, a (T alpha gamma)2 structure was detected. The close proximity of T alpha and T gamma suggests that T gamma may play a role in conferring the specificity of the interaction between T alpha and rhodopsin. Most of the oligomeric cross-linked structures between T alpha and T beta gamma were diminished in the activated form of transducin, with guanosine 5'-(beta, gamma-imidotriphosphate) (Gpp(NH)p) bound. However, cross-linking between T beta and T gamma was not altered. These results suggest that transducin exists as an oligomer in solution which dissociates upon the binding of Gpp(NH)p. To identify the possible interacting domains between the T alpha, T beta, and T gamma subunits, the cross-linked products were subjected to limited tryptic proteolysis. Several cross-linked tryptic peptides of transducin subunits were found and include the cross-linked products of the N terminus 15-kDa fragment of T beta and the C terminus 5-kDa fragment of T alpha, T gamma and the 12-kDa fragment of T alpha, T gamma and the 15-kDa as well as the 23-kDa fragments of T beta, and an intra-T alpha cross-linked product of the 2- and 21-kDa fragments. These results have allowed the construction of a topographical model for the transducin subunits. The organization of the subunits of PDE (P alpha, P beta, and P gamma) was also studied. The formation of the high molecular size cross-linked products of PDE resulted in the concurrent loss of the P beta and P gamma subunits, suggesting that they are in close proximity. Finally, the interaction between transducin and PDE was examined by chemical cross-linking of transducin-Gpp(NH)p and PDE. Two additional cross-linked products of 180 and 210 kDa were obtained which could be due to the cross-linking of T alpha or T beta with P alpha beta subunits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号