首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the hypothesis that p53 protein may play a central role in regulating reproduction of mammalian cells, we compared the absolute amounts and relative rates of synthesis of p53 protein in two pseudonormal cell lines, 3T3 and C3H 10T1/2, during quiescence, during log proliferation, and in quiescent cells stimulated with serum. The absolute amount of p53 protein per cell was found to be severalfold lower in quiescent cells than in log-phase cells. The ratio of the rate of synthesis of p53 protein to the rate of synthesis of total protein was slightly higher in quiescent cells than the same ratio in log-phase cells. Thus, entry into quiescence is not accompanied by a differential switch-off of synthesis of p53 protein. In quiescent cells stimulated with serum the amount of p53 protein per cell and its rate of synthesis increase, but only in proportion to the increase in total protein per cell and the increase in rate of total protein synthesis. Similarly, 12-14 h after serum stimulation, the time of the G1 to S transition, the accumulated increase in p53 protein per cell is about what would be expected for a short-lived protein whose rate of synthesis has increased in proportion to the increase in rate of synthesis of total protein. The results are not those expected for a protein that functions specifically in release from quiescence or in transition from G1 to S.  相似文献   

2.
Aurora kinases are mitotic serine/threonine protein kinases and are attractive novel targets for anticancer therapy. Many small-molecule inhibitors of Aurora kinases are currently undergoing clinical trials. Aurora A kinase is essential for successful mitotic transition. MK8745 is a novel and selective small-molecule inhibitor of Aurora A kinase. MK8745 induced apoptotic cell death in a p53-dependent manner when tested in vitro in cell lines of multiple lineages. Cells expressing wild-type p53 showed a short delay in mitosis followed by cytokinesis, resulting in 2N cells along with apoptosis. However, cells lacking or with mutant p53 resulted in a prolonged arrest in mitosis followed by endoreduplication and polyploidy. Cytokinesis was completely inhibited in p53-deficient cells, as observed by the absence of 2N cell population. The induction of apoptosis in p53-proficient cells was associated with activation of caspase 3 and release of cytochrome c but was independent of p21. Exposure of p53 wild-type cells to MK8745 resulted in the induction of p53 phosphorylation (ser15) and an increase in p53 protein expression. p53-dependent apoptosis by MK8745 was further confirmed in HCT 116 p53-/- cells transfected with wild-type p53. Transient knockdown of Aurora A by specific siRNA recapitulated these p53- dependent effects, with greater percent induction of apoptosis in p53 wild-type cells. In conclusion, our studies show p53 as a determining factor for induction of apoptosis vs. polyploidy upon inhibition of Aurora A.  相似文献   

3.
Aurora kinases are mitotic serine/threonine protein kinases and are attractive novel targets for anticancer therapy. Many small-molecule inhibitors of Aurora kinases are currently undergoing clinical trials. Aurora A kinase is essential for successful mitotic transition. MK8745 is a novel and selective small-molecule inhibitor of Aurora A kinase. MK8745 induced apoptotic cell death in a p53-dependent manner when tested in vitro in cell lines of multiple lineages. Cells expressing wild-type p53 showed a short delay in mitosis followed by cytokinesis, resulting in 2N cells along with apoptosis. However, cells lacking or with mutant p53 resulted in a prolonged arrest in mitosis followed by endoreduplication and polyploidy. Cytokinesis was completely inhibited in p53-deficient cells, as observed by the absence of 2N cell population. The induction of apoptosis in p53-proficient cells was associated with activation of caspase 3 and release of cytochrome c but was independent of p21. Exposure of p53 wild-type cells to MK8745 resulted in the induction of p53 phosphorylation (ser15) and an increase in p53 protein expression. p53-dependent apoptosis by MK8745 was further confirmed in HCT 116 p53−/− cells transfected with wild-type p53. Transient knockdown of Aurora A by specific siRNA recapitulated these p53-dependent effects, with greater percent induction of apoptosis in p53 wild-type cells. In conclusion, our studies show p53 as a determining factor for induction of apoptosis vs. polyploidy upon inhibition of Aurora A.Key words: Aurora A kinase, polyploidy, apoptosis, p53, cell cycle  相似文献   

4.
In this study we investigated the function of p53 as a regulator of cell cycle progression in cycling and senescent cells. Using the conditional temperature-sensitive (ts) mutant we could prevent the detrimental effect of constitutive expression of high levels of wt p53 protein. High levels of wt p53 inhibited cell proliferation by blocking the cells to progress from G1 to S phase of the cell cycle. Flow cytometric analysis revelaed a maintenance of G1 cell population for a longer time depending on the prolonged expression of wt p53 protein. The p53 mediated inhibition of cell proliferation and of the cycle was reversible. However, a spontaneous increase of wt p53 occurring in ageing normal human MRC-5 fibroblasts was associated with irreversible reduction of proliferative potential. The accumulation of G1 cells was detected by flow cytometry. By the measurement of DNA content it is not possible to discriminate between cells arrested in G1 and G0 phase, therefore, the expression of G1 markers was determined. Analysis of the expression of distinct cell cycle regulators revealed that quiescent MRC-5 cells were in G0 phase. Our results indicate that cell cycle arrest occurring in senescent cells is associated with the G0 transition.  相似文献   

5.
Prolonged wild-type p53 protein accumulation and cisplatin resistance   总被引:2,自引:0,他引:2  
The major limitation for the chemotherapeutic use of DNA-damaging agent cisplatin is the development of resistance in initially responsive tumors. One of the main pathways regulating cell survival following DNA damage is the p53 pathway. In this study we compared the cisplatin-induced response of p53 protein and its downstream targets p21WAF-1 and Mdm2 in the cisplatin-sensitive ovarian carcinoma cell line A2780 and its cisplatin-resistant derivative CP70. A higher dose of cisplatin and a longer exposure time was required to achieve the same level of p53, p21WAF-1, and Mdm2 protein accumulation in the cisplatin-resistant CP70 cells versus cisplatin-sensitive A2780 cells. A significant difference between the two cell lines was observed in cisplatin-induced stabilization of p53 protein. The p53 half-life increased 31-fold in CP70 cells compared to only 6-fold in A2780 cells. In contrast, there was no difference in p21WAF-1 half-life between the two cell lines. These results demonstrate that in A2780 and CP70 cells resistance to cisplatin correlates with prolonged p53 protein stabilization and accumulation.  相似文献   

6.
Inactivation of tumor suppressor protein retinoblastoma (Rb) is important mechanism for the G1/S transition during cell cycle progression. Human breast cancer cells T47D release great amount of nitric oxide (NO), but its relation to tumor suppressor Rb is unknown. In this study, it is shown that NO induces phosphorylation and inactivation of Rb tumor suppressor protein, increasing G2/M phase and cell proliferation of breast cancer cells T47D. NO did not induce changes in p53 ser-15 phosphorylation, the most phosphorylated site of p53 during its activation. These data indicate that NO induces cell proliferation through the Rb pathway. NO phosphorylates and inactivates tumor suppressor protein Rb inducing mitosis by the p53 independent pathway in breast cancer cell.  相似文献   

7.
The steady-state levels of p53 protein and p53 mRNA in transformed and nontransformed cells were examined to elucidate the mechanisms controlling expression of p53. mRNA levels were determined by Northern blot hybridization analysis, employing a p53-specific cDNA clone (M. Oren and A.J. Levine, Proc. Natl. Acad. Sci. U.S.A. 80:56-59, 1983), and protein levels were determined by the Western blotting technique. Analysis of p53 mRNA revealed a single polyadenylated mRNA species migrating at ca. 18S. Levels of p53 mRNA in simian virus 40-transformed cell line (SVT2) and in an homologous nontransformed cell line (3T3) were equivalent, although the steady-state levels of p53 protein were 25- to 100-fold higher in the SVT2 cells than in the 3T3 cells. A study with a non-virus-transformed cell system revealed a different result. Embryonal carcinoma cells (F9) were found to have nearly 20-fold higher levels of p53 mRNA in comparison with differentiated benign progeny cells. In this system the difference in p53 mRNA levels corresponded to the difference in p53 protein levels. Pulse-chase experiments were performed to study the half-life of p53 protein in these four types of cells. The turnover of p53 protein occurred with biphasic kinetics. In addition, it was found that protein synthesis inhibitors placed in the medium during the chase period prevented the turnover of p53 protein in transformed cells, but not in nontransformed (3T3) cells. These results provide evidence that the regulation of p53 expression in cells can occur at the level of p53 mRNA abundancy or p53 protein stability depending upon the experimental system under study, and that a regulated degradation process controls the turnover of p53 protein.  相似文献   

8.
Nucleolar GTP-binding protein (NGP-1) is overexpressed in various cancers and proliferating cells, but the functional significance remains unknown. In this study, we show that NGP-1 promotes G1 to S phase transition of cells by enhancing CDK inhibitor p21Cip-1/Waf1 expression through p53. In addition, our results suggest that activation of the cyclin D1-CDK4 complex by NGP-1 via maintaining the stoichiometry between cyclin D1-CDK4 complex and p21 resulted in hyperphosphorylation of retinoblastoma protein at serine 780 (p-RBSer-780) followed by the up-regulation of E2F1 target genes required to promote G1 to S phase transition. Furthermore, our data suggest that ribosomal protein RPL23A interacts with NGP-1 and abolishes NGP-1-induced p53 activity by enhancing Mdm2-mediated p53 polyubiquitination. Finally, reduction of p-RBSer-780 levels and E2F1 target gene expression upon ectopic expression of RPL23a resulted in arrest at the G1 phase of the cell cycle. Collectively, this investigation provides evidence that NGP-1 promotes cell cycle progression through the activation of the p53/p21Cip-1/Waf1 pathway.  相似文献   

9.
10.
Nucleostemin (NS) is a nucleolar protein expressed in adult and embryo-derived stem cells, transformed cell lines, and tumors. NS decreases when proliferating cells exit the cell cycle, but it is unknown how NS is controlled, and how it participates in cell growth regulation. Here, we show that NS is down-regulated by the tumor suppressor p14(ARF) and that NS knockdown elevates the level of tumor suppressor p53. NS knockdown led to G1 cell cycle arrest in p53-positive cells but not in cells in which p53 was genetically deficient or depleted by small interfering RNA knockdown. These results demonstrate that, in the cells investigated, the level of NS is regulated by p14(ARF) and the control of the G1/S transition by NS operates in a p53-dependent manner.  相似文献   

11.
A rabbit antiserum was prepared against the C-terminal peptide of 21 amino acids from the human heat shock protein hsp70. These antibodies were shown to be specific for this highly inducible heat shock protein (72 kilodaltons [kDa] in rat cells), and for a moderately inducible, constitutively expressed heat shock protein, hsc70 (74 kDa). In six independently derived rat cell lines transformed by a murine cDNA-genomic hybrid clone of p53 plus an activated Ha-ras gene, elevated levels of p53 were detected by immunoprecipitation by using murine-specific anti-p53 monoclonal antibodies. In all cases, the hsc70, but not the hsp70, protein was coimmunoprecipitated with the murine p53 protein. Similarly, antiserum to heat shock protein coimmunoprecipitated p53. Western blot (immunoblot) analysis demonstrated that the hsc70 and p53 proteins did not share detectable antigenic epitopes. The results provide clear immunological evidence for the specific association of a single heat shock protein, hsc70, with p53 in p53-plus-ras-transformed cell lines. A p53 cDNA clone, p11-4, failed to produce clonable cell lines from foci of primary rat cells transfected with p11-4 plus Ha-ras. A mutant p53 cDNA clone derived from p11-4, SVKH215, yielded a 2- to 35-fold increase in the number of foci produced after transfection of rat cells with SVKH215 plus Ha-ras. When cloned, 87.5% of these foci produced transformed cell lines. SVKH215 encodes a mutant p53 protein that binds preferentially to the heat shock proteins of 70 kDa compared with binding by the parental p11-4 p53 gene product. These data suggest that the p53-hsc70 protein complex could have functional significance in these transformed cells.  相似文献   

12.
13.
Down-regulation of p53 expression has been found in a broad range of human cancers and cell proliferation disorders, indicating that p53 plays a key role in cell cycle regulation and tumor suppression. In our current study, we transfected human embryonic lung fibroblast (HELF) cells with pcDNA3-wild-type p53 (pcDNA3-wtp53) plasmid, or pcDNA3-H179Y-mutated p53 (pcDNA3-mtp53) plasmid that mimics the mutation found in some human lung tumors, and further studied the role of p53 in the regulation of cell proliferation. Over expression of wild-type p53 caused cell cycle arrest at G1 phase with reduced cell size, decreased expression of cyclin D3, cyclin E, Cdk2 and Cdk4, and increased expression of p21. In contrast, over expression of H179Y-mutant p53 promoted G1 to S phase transition with enlarged cell size and increased cyclin A1 and Cdk4 expression in HELF cells. These results indicate that mutation at the p53 H179Y residue up-regulates cyclin A1 and Cdk4 expression, and promotes HELF cell proliferation.  相似文献   

14.
15.
Bian T  Gibbs JD  Örvell C  Imani F 《PloS one》2012,7(5):e38052
Respiratory syncytial virus (RSV) is the major cause of viral respiratory infections in children. Our previous study showed that the RSV infection induced lung epithelial cell cycle arrest, which enhanced virus replication. To address the mechanism of RSV-induced cell cycle arrest, we examined the contribution of RSV-matrix (RSV-M) protein. In this report, we show that in both the A549 cell line and primary human bronchial epithelial (PHBE) cells, transfection with RSV-M protein caused the cells to proliferate at a slower rate than in control cells. The cell cycle analysis showed that RSV-M protein induced G1 phase arrest in A549 cells, and G1 and G2/M phase arrest in PHBE cells. Interestingly, RSV-M expression induced p53 and p21 accumulation and decreased phosphorylation of retinoblastoma protein (Rb). Further, induction of cell cycle arrest by RSV-M was not observed in a p53-deficient epithelial cell line (H1299). However, cell cycle arrest was restored after transfection of p53 cDNA into H1299 cells. Taken together, these results indicate that RSV-M protein regulates lung epithelial cell cycle through a p53-dependent pathway, which enhances RSV replication.  相似文献   

16.
17.
A specific cellular protein of molecular weight of 53–55,000 (p53) has been shown to be induced in all SV40 transformed cells. A similar protein has also been shown to be present in embryonal carcinoma cells and in midgestation murine embryo primary cells, which are not infected by SV40. In embryo cell primaries the amount of the protein was shown to decrease with the increase in the stage of embryo development. As differentiation or decrease in cell growth rate can account for this, and since the growth rate of embryo primary cells cannot be measured, we chose to investigate various embryonal carcinoma cells. We report that the p53 is present in a pluripotent embryonal carcinoma cell OTT6050, and in its differentiated parietal endoderm derivative, PYS-2 cells. The amount of p53 is higher in the undifferentiated EC stem cells than in the differentiated PYS-2 (parietal endoderm) cells. The amount of the protein decreases in F9 embryonal carcinoma cells induced to differentiate to a parietal endoderm cell type by treatment with retinoic acid, as it does following spontaneous differentiation of OTT6050 EC cells. To determine if a change in growth rate, rather than differentiation, might acount for the diminished levels of this protein, the amount ofp53 was measured in growing and in growth arrested cell populations. When the growth rate of F9 cells was reduced by treatment with 8-bromocyclic AMP there was no change in the amount of p53. The half life of the p53 was compared in the undifferentiated and the differentiated cell types to determine if a change in stability might account, in part, for the altered levels of this protein. The p53 is found to be most stable in the SV40 transformed established clonal cells. It is less stable in the fibroblast clonal cells which were not transformed by SV40. The results of these experiments indicate that a decrease in the amount of p53 primarily correlates with differentiation in the embryonal carcinoma cell lines studied and not with cell growth rate. Furthermore, the decrease appears to be related (in part) to the decreased stability of the p53.  相似文献   

18.
The effect of anticancer drugs on the expression of p53 protein in tumor cells was studied using the Western Blot analysis. Human lung carcinoma cell line A549 and human breast carcinoma cell line MCF7 sensitive (WT) and resistant (DOX/R) to doxorubicin were used. An increase in p53 protein expression was found in A549 and MCF7 (WT) cells treated with cisplatin, methotrexate, and doxorubicin, whereas the level of p53 was not statistically significantly changed in the MCF7 DOX/R cells. In the untreated MCF7 DOX/R cells the level of p53 protein was markedly higher than in the untreated WT MCF7 cells. A potential role of p53 protein in the development of doxorubicin-resistance in carcinoma cells is discussed.  相似文献   

19.
Previously, we have identified a novel centrosomal protein centrobin that asymmetrically localizes to the daughter centriole. We found that depletion of centrobin expression inhibited the centriole duplication and impaired cytokinesis. However, the biological significance of centrobin in the cell cycle remains unknown. In the current study, we observed that silencing centrobin significantly inhibited the proliferation of lung cancer cell A549 and prevented the cells from G1 to S transition, whereas the growth rate of lung cancer cell line H1299, a p53-null cell line, was not affected. Furthermore, we demonstrated that the G1–S-phase arrest induced by centrobin knockdown in A549 cells is mediated by the upregulation of cell-cycle regulator p53, which is associated with the activation of cellular stress induced p38 pathway instead of DNA damage induced ATM pathway. Inhibition of p38 activity or downregulation of p38 expression could overcome the cell-cycle arrest caused by centrobin depletion. Taken together, our current findings demonstrated that centrobin plays an important role in the progression of cell cycle, and a tight association between the cell-cycle progression and defective centrosomes caused by depletion of centrobin.  相似文献   

20.
Y Wu  Y Liu  L Lee  Z Miner    M Kulesz-Martin 《The EMBO journal》1994,13(20):4823-4830
A p53 variant protein (p53as) generated from alternatively spliced p53 RNA is expressed in normal and malignant mouse cells and tissues, and p53as antigen activity is preferentially associated with the G2 phase of the cell cycle, suggesting that p53as and p53 protein may have distinct properties. Using p53as and p53 proteins translated in vitro, we now provide evidence that p53as protein has efficient sequence-specific DNA-binding ability. DNA binding by p53 protein is inefficient in comparison and requires activation. Furthermore, p53as and p53 proteins formed hetero-oligomers when co-translated in vitro, resulting in inactivation of p53as DNA-binding activity. Gel filtration indicated that p53as translated in vitro, like p53, formed tetramers. In support of a functional role of p53as in cells, p53as/p53 hetero-oligomers were coimmunoprecipitated from mouse cells, and both protein forms were detectable in nuclear extracts by electrophoretic mobility shift assays. These results suggest that the biochemical functions of p53 are mediated by interaction between two endogenous protein products of the wild-type p53 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号