首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary An extracellular xylanase was purified to homogeneity from the culture filtrate of a thermophilic Bacillus sp. The molecular weight of the purified xylanase was 44 kDa, as analysed by SDS/PAGE. The enzyme reaction followed Michaelis–Menten kinetics with Kmapp and Vmax values of 0.025 mg/ml and 450 U/mg protein, respectively, as obtained from a Lineweaver–Burk plot. The xylanase contained no other enzyme activity except for the hydrolysis of xylan substrate. The optimal temperature of the enzyme assay was 50 °C. The optimum pH for the xylanase activity was at three peaks 6.5, 8.5 and 10.5, respectively and the enzyme was stable over a broad range of pH from pH 6 to 10.5. Metal ions tested with demetalized enzyme had no effect, with the exception of Hg2+ and Pb2+ (both strong inhibitors). Inhibition of the enzyme activity by N-bromosuccinimide (amino acid modifier) indicated the role of tryptophan residues in the catalytic function of the enzyme. Due to these outstanding properties, the xylanase of Bacillussp. finds potential applications in biopulping, biobleaching and de-inking of recycled paper and other industrial processes.  相似文献   

2.
Strains Paenibacillus sp. BP-23 and Bacillus sp. BP-7, previously isolated from soil from a rice field, secreted high levels of pectinase activity in media supplemented with pectin. Production of pectinases in strain Paenibacillus sp. BP-23 showed catabolite repression, while in Bacillus sp. BP-7 production of pectin degrading enzymes was not negatively affected by glucose. The two strains showed lyase activities as the predominant pectinases, while hydrolase activity was very low. Analysis of Paenibacillus sp. BP-23 in SDS–polyacrylamide gels and zymograms showed five pectinase activity bands. The strict requirement of Ca2+ for lyase activity of the strain indicates that correspond to pectate lyases. For Bacillus sp. BP-7, zymograms showed four bands of different size. The strain showed a Ca2+ requirement for lyase activity on pectate but not on pectin, indicating that the pectinolytic system of Bacillus sp. BP-7 is comprised of pectate lyases and pectin lyases. The results show differences in pectin degrading systems between the two aerobic sporogenous bacterial strains studied.  相似文献   

3.
Sequence analysis of a Bacillus sp. BP-7 recombinant clone coding for a previously described carboxylesterase revealed the presence of an additional ORF with homology to bacterial hydroxycinnamic acid decarboxylases. Analysis of the amino acid sequence of the encoded enzyme revealed the presence of a single, highly conserved domain of 161 amino acids, with a predicted molecular mass of 19,143 Da and a pI of 5.5. Crude cell extracts from the recombinant clone displayed activity on ferulic, p-coumaric and caffeic acids, with no need for added cofactors. The cloned enzyme, named PadA, displayed maximum activity at 40°C and pH 5.5, being stable over a broad range of pH and up to 45°C. HPLC analysis of the products of catalysis revealed the conversion of phenolic acids to their aromatic 4-vinyl derivatives, with no accumulation of other by-products. PadA was found as a homodimer in the parental Bacillus sp. BP-7 strain and its expression was induced by both hydroxycinnamic acids and their corresponding derivative products. The results obtained suggest that the enzyme could be involved in a stress response for conversion of toxic hydroxycinnamic acids released after plant cell wall degradation.  相似文献   

4.
Bacillus species producing a thermostable phytase was isolated from soil, boiled rice, and mezu (Korean traditinal koji). The activity of phytase increased markedly at the late stationary phase. An extracellular phytase from Bacillus sp. KHU-10 was purified to homogeneity by acetone precipitation and DEAE-Sepharose and phenyl-Sepharose column chromatographies. Its molecular weight was estimated to be 46 kDa on gel filtration and 44 kDa on SDS-polyacrylamide gel elctrophoresis. Its optimum pH and temperature for phytase activity were pH 6.5-8.5 and 40°C without 10 mM CaCl2 and pH 6.0-9.5 and 60°C with 10 mM CaCl2. About 50% of its original activity remained after incubation at 80°C or 10 min in the presence of 10 mM CaCl2. The enzyme activity was fairly stable from pH 6.5 to 10.0. The enzyme had an isoelectric point of 6.8. As for substrate specificity, it was very specific for sodium phytate and showed no activity on other phosphate esters. The K m value for sodium phytate was 50 M. Its activity was inhibited by EDTA and metal ions such as Ba2+, Cd2+, Co2+, Cr3+, Cu2+, Hg2+, and Mn2+ ions.  相似文献   

5.
Bacillus amyloliquefaciens CH51, an isolate from cheonggukjang, Korean fermented soyfood, secretes several enzymes into culture medium. A gene encoding 19 kDa xylanase was cloned by PCR. Sequencing showed that the gene encoded a glycohydrolase family 11 xylanase and named xynA. xynAHis, xynA with additional codons for his-tag, was overexpressed in Escherichia coli BL21(DE3) using pET-26b(+). XynAHis was purified using HisTrap affinity column. Km and Vmax of XynAHis were 0.363 mg/ml and 701.1 μmol/min/mg, respectively with birchwood xylan as a substrate. The optimum pH and temperature were pH 4 and 25 °C, respectively. When xynA was introduced into Bacillus subtilis WB600, active XynA was secreted into culture medium.  相似文献   

6.
The endo-β-1, 4-xylanase gene xynA from Aspergillus sulphureus, encoded a lack-of-signal peptide protein of 184 amino acids, was de novo synthesized by splicing overlap extension polymerase chain reaction according to Pichia pastoris protein’s codon bias. The synthetic DNA, composed of 572 nucleotides, was ligated into the downstream sequence of an α-mating factor in a constitutive expression vector pGAPzαA and electrotransformed into the P. pastoris X-33 strain. The transformed yeast screened by Zeocin was able to constitutively secrete the xylanase in yeast–peptone–dextrose liquid medium. The heterogenous DNA was stabilized in the strain by 20-times passage culture. The recombinant enzyme was expressed with a yield of 120 units/mL under the flask culture at 28°C for 3 days. The enzyme showed optimal activity at 50°C and pH 2.4–3.4. Residual activity of the raw recombinant xylanase was not less than 70% when fermentation broth was directly heated at 80°C for 30 min. However, the dialyzed xylanase supernatant completely lost the catalytic activity after being heated at 60°C for 30 min. The recombinant xylanase showed no obvious activity alteration by being pretreated with Na2HPO4-citric acid buffer of pH 2.4 for 2 h. The xylanase also showed resistance to certain metal ions (Na+, Mg2+, Ca2+, K+, Ba2+, Zn2+, Fe2+, and Mn2+) and EDTA. These biochemical characteristics suggest that the recombinant xylanase has a prospective application in feed industry as an additive.  相似文献   

7.
In recent years, the biotechnological use of xylanases has grown remarkably. To efficiently produce xylanase for food processing and other industry, a codon-optimized recombinant xylanase gene from Streptomyces sp. S38 was synthesized and extracellularly expressed in Pichia pastoris under the control of AOX1 promoter. SDS-PAGE and activity assay demonstrated that the molecular mass of the recombinant xylanase was estimated to be 25 kDa, the optimum pH and optimum temperature were 5.5 and 50°C, respectively. In shake flask culture, the specific activity of the xylanase activity was 5098.28 U/mg. The K m and V max values of recombinant xylanase were 11.0 mg/ml and 10000 μmol min−1 mg−1, respectively. In the presence of metal ions such as Ca2+, Cu2+, Cr3+ and K+, the activity of the enzyme increased. However, strong inhibition of the enzyme activity was observed in the presence of Hg2+. This is the first report on the expression properties of a recombinant xylanase gene from the Streptomyces sp. S38 using Pichia pastoris. The attractive biochemical properties of the recombinant xylanase suggest that it may be a useful candidate for variety of commercial applications.  相似文献   

8.
Summary Three alkaline amylases have been newly discovered in a culture medium of an alkalophilic Bacillus sp. H-167 isolated from soils. These amylases produced maltohexaose as the main product from starch. All three amylases were purified to give a single band on disc electrophoresis. They had similar properties except for molecular weight (MW) and isoelectric point (pI): optimum pH, 10.5; optimum temperature, 60°C; pH stability, 7–12; heat stability, 50–55°C; MW, 59000–80000; pI, 3.5–4.3. Metal ions such as Hg2+, Zn2+, Pb2+, Co2+ and Ni2+ inhibited the enzyme activity. All the enzymes hydrolyzed starch to produce preferentially maltohexaose, rather than maltose and maltotetraose, in an early stage of the reaction. The yield of maltohexaose reached 25%–30% from soluble starch.  相似文献   

9.
An extracellular, highly thermostable and alkaline CMCase was purified from Bacillus sp. VG1 using ion exchange and gel filtration chromatography. Enzyme was optimally produced in a medium containing 1.0% CMC and 0.5% tryptone. The purified CMCase had a pH optimum of 9–10 and a half life of 12 min even at 100 °C. The enzyme activity was reduced by Hg2+ and stimulated by Co2+, Na+ and K+. Various detergents and proteinases moderately inhibited the CMCase activity. The molecular weight studies showed a single band on SDS–PAGE.  相似文献   

10.
Hong SY  Lee JS  Cho KM  Math RK  Kim YH  Hong SJ  Cho YU  Kim H  Yun HD 《Biotechnology letters》2006,28(22):1857-1862
An artificial, bifunctional, thermostable cellulase–xylanase enzyme from Thermotoga maritima by gene fusion. The fusion protein exhibited both cellulase and xylanase activity when xynA was fused downstream of cel5C but no activities were shown when xynA was fused upstream of cel5C. The enzyme was optimally active at pH 5.0 and 80°C over 30 min. E. coli expressed the fusion enzyme, with an apparent molecular mass of approximately 152 kDa by carboxymethyl cellulose- and xylan-SDS-PAGE.  相似文献   

11.
A xylanase (XynA) was purified from the culture medium of Streptomyces sp. FA1, which was previously isolated from a bamboo retting system. XynA had a molecular mass of 43 kDa, displayed maximal activity at pH 5.5, retained 41% of its maximal activity at pH 11.0, and was stable over a wide pH range (3.0 ~ 11.0). Purified XynA was subjected to peptide mass fingerprinting, which led to the cloning of the xynA gene. The xynA gene, which encodes a mature protein of 436 amino acids, was heterologously expressed in E. coli BL21(DE3). The activity in the culture medium could reach 213.5 U/mL, which was 11.2-fold higher than that produced by Streptomyces sp. FA1. BLAST searching revealed that full-length XynA shares less than 90% identity with most of its homologues, whereas amino acids 48-436 of the enzyme share 97% identity with an open reading frame encoding a putative full-length mature xylanase from Streptomyces tendae. The truncated xynA gene, xynA 48-436 , was cloned and expressed in E. coli, however, no xylanase activity could be detected in the culture medium. Based on these results, it is suggested that XynA is a new member of glycoside hydrolases family10 with exceptional catalytic efficiency at alkaline pH.  相似文献   

12.
In this study, the extracellular enzyme activity ofBacillus sp. A8-8 was detected on LB agar plates containing 0.5% of the following substrates: carboxymethylcellulose (CMC), xylan, cellulose, and casein, respectively. The β-1,3-1,4 glucanase produced fromBacillus sp. A8-8 was purified by ammonium sulfate and hydrophobic chromatography. The molecular size of the protein was estimated by SDS-PAGE as approximately 33 kDa. The optimum pH and temperature for the enzyme activity were 6.0 and 60°C, respectiveley. However, enzyme activity was shown over a broad range of pH values and temperatures. The purified β-1,3-1,4 glucanase retained over 70% of its original activity after incubation at 80°C for 2 h, and showed over 40% of its original activity within the pH range of 9 to 12. This suggests that β-1,3-1,4 glucanase fromBacillus sp. A8-8 is thermostable and alkalistable. In addition, β-1,3-1,4 glucanase had higher substrate specificity to lichenan than to CMC. Finally the activity of the endoglucanase was inhibited by Fe3+, Mg2+, and Mn2+ ions. However Co2+ and Ca2+ ions were increased its activity. These authors contributed equally to this work.  相似文献   

13.
The gene encoding a xylanase from Geobacillus sp. 71 was isolated, cloned, and sequenced. Purification of the Geobacillus sp 7.1 xylanase, XyzGeo71, following overexpression in E. coli produced an enzyme of 47 kDa with an optimum temperature of 75°C. The optimum pH of the enzyme is 8.0, but it is active over a broad pH range. This protein showed the highest sequence identity (93%) with the xylanase from Geobacillus thermodenitrificans NG80-2. XyzGeo71 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10). XyzGeo71 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 7.0 to 11.0 for 6 h. Its activity was partially inhibited by Al3+ and Cu2+ but strongly inhibited by Hg2+. The enzyme follows Michaelis–Menten kinetics, with Km and Vmax values of 0.425 mg xylan/ml and 500 μmol/min.mg, respectively. The enzyme was free from cellulase activity and degraded xylan in an endo fashion. The action of the enzyme on oat spelt xylan produced xylobiose and xylotetrose.  相似文献   

14.
An alkaline cellulase from Bacillus sp. HSH-810 was purified 8.7-fold with a 30% yield and a specific activity of 71 U mg–1 protein. It was optimally active at pH 10 and 50 °C and was stable from pH 6 to 10 with more than 60% activity remaining after heating at 60 °C for 60 min. The molecular mass of cellulase was 80 kDa. It was inhibited by 50% by Fe3+ (1 mM) and Mn2+ (0.1 mM) but was relatively insensitive to Hg2+ and Pb2+ at 1 mM.Revisions requested: 8 October 2004/1 December 2004; Revisions received 29 November 2004/5 January 2005  相似文献   

15.
Production of extracellular xylanase from Bacillus sp. GRE7 using a bench-top bioreactor and solid-state fermentation (SSF) was attempted. SSF using wheat bran as substrate and submerged cultivation using oat-spelt xylan as substrate resulted in an enzyme productivity of 3,950 IU g−1 bran and 180 IU ml−1, respectively. The purified enzyme had an apparent molecular weight of 42 kDa and showed optimum activity at 70°C and pH 7. The enzyme was stable at 60–80°C at pH 7 and pH 5–11 at 37°C. Metal ions Mn2+ and Co2+ increased activity by twofold, while Cu2+ and Fe2+ reduced activity by fivefold as compared to the control. At 60°C and pH 6, the K m for oat-spelt xylan was 2.23 mg ml−1 and V max was 296.8 IU mg−1 protein. In the enzymatic prebleaching of eucalyptus Kraft pulp, the release of chromophores, formation of reducing sugars and brightness was higher while the Kappa number was lower than the control with increased enzyme dosage at 30% reduction of the original chlorine dioxide usage. The thermostability, alkali-tolerance, negligible presence of cellulolytic activity, ability to improve brightness and capacity to reduce chlorine dioxide usage demonstrates the high potential of the enzyme for application in the biobleaching of Kraft pulp.  相似文献   

16.
A Gram-positive, non-pigmented, rod-shaped, diazotrophic bacterial strain, designated SC-N012T, was isolated from rhizosphere soil of sugarcane and was subjected to a polyphasic taxonomic study. The strain exhibited phenotypic properties that included chemotaxonomic characteristics consistent with its classification in the genus Bacillus. Sequence analysis of the 16S rRNA gene of SC-N012T revealed the closest match (98.9% pair wise similarity) with Bacillus clausii DSM 8716T. However, DNA–DNA hybridization experiments indicated low levels of genomic relatedness (32%) with this strain. The major components of the fatty acid profile are iso-C15:0, anteiso-C15:0, iso-C17:0 and anteiso-C17:0. The diagnostic cell-wall diamino acid was meso-diaminopimelic acid. The G+C content of the genomic DNA is 43.0 mol%. The lipids present in strain SC-N012T are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol and two unknown phospholipids. Their predominant respiratory quinone was MK-7. Studies of DNA-DNA relatedness, morphological, physiological and chemotaxonomic analyses and phylogenetic data based on 16S rRNA gene sequencing allowed strain SC-N012T to be described as members of novel species of the genus Bacillus, for which the name Bacillus rhizosphaerae sp. nov. is proposed. The type strain is SC-N012T (=DSM 21911T = NCCB 100267T).  相似文献   

17.
Xylanase produced by E. coli HB 101 carrying plasmid pCX311, which contains the xylanase A gene of alkalophilic Bacillus sp. strain C-125, was purified by ammonium sulfate precipitation, DEAE-cellulose column chromatography and Sephadex G-75 gel filtration. The purified enzyme had a molecular weight of 43,000. The pH and temperature optima for its activity were 6~10 and 70°C, respectively. The enzyme retained full activity after incubation at 50°C for 10 min. These enzymatic properties of the xylanase were almost the same as those of xylanase A. But this enzyme was less stable than xylanase A at low pHs. Furthermore, we could purify a larger amount of alkaline xylanase from E. coli than from alkalophilic Bacillus sp. strain C-125.  相似文献   

18.
Bacillus sp. NTU-06 was used to produce xylanase, which is an important industrial enzyme used in the pulp and paper industry. The enzyme was purified by fast protein liquid chromatography (FPLC) and had a molecular mass of 24 kDa. The enzyme was active over a concentration range of 0–20% sodium chloride in culture broth, although its activity was optimal in 5% sodium chloride. A salinity stability test showed that 43% of the enzyme activity was retained after 4 h in 20% sodium chloride. Xylanase activity was maximal at pH 8.0 and 40°C. The enzyme was somewhat thermostable, retaining 20% of the original activity after incubation at 70°C for 4 h. The xylanase had Km and Vmax values of 3.45 mg mL−1 and 387.3 µmol min−1mg−1, respectively. The deduced internal amino acid sequence of Bacillus sp. NTU-06 xylanase resembled the sequence of beta-1,4-endoxylanase, which is a member of glycoside hydrolase family 11. Some of the novel characteristics that make this enzyme potentially effective in xylan biodegradation are discussed.  相似文献   

19.
A Gram-positive, rod-shaped, motile, endospore-forming bacterial strain, designated NB22T, was isolated from soil of a lettuce field in Kyonggi province, South Korea, and was characterized by using a polyphasic taxonomic approach. This novel isolate grew optimally at 30–37°C and pH 8–9. It grew in the presence of 0–4% NaCl (optimum, 1–2%). Comparative 16S rRNA gene sequence analysis showed that strain NB22T was closely related to members of the genus Bacillus and fell within a coherent cluster comprising B. siralis 171544T (98.1%) and B. korlensis ZLC-26T (97.3%). The levels of 16S rRNA gene sequence similarity with respect to other Bacillus species with validly published names were less than 96.4%. Strain NB22T had a genomic DNA G+C content of 36.3 mol% and the predominant respiratory quinone was MK-7. The peptidoglycan contained meso-diaminopimelic acid. The major cellular fatty acids were iso-C15:0, anteiso-C15:0, C14:0, and C16:0. These chemotaxonomic results supported the affiliation of strain NB22T to the genus Bacillus, and the low DNA-DNA relatedness values and distinguishing phenotypic characteristics allowed genotypic and phenotypic differentiation of strain NB22T from recognized Bacillus species. On the basis of the evidence presented, strain NB22T is considered to represent a novel species of the genus Bacillus, for which the name Bacillus kyonggiensis sp. nov. is proposed. The type strain is NB22T (=KEMB 5401-267T =JCM 17569T).  相似文献   

20.
A chitosanase-producing Bacillus sp. DAU101 was isolated from Korean traditional food. This strain was identified on the basis of phylogenetic analysis of the 16S rDNA sequence, gyrA gene, and phenotypic analysis. The gene encoding chitosanase (csn) was cloned and sequenced. The csn gene consisted of an open reading frame of 837 nucleotides and encodes 279 amino acids with a deduced molecular weight of 31,420 Da. The deduced amino acid sequence of the chitosanase from Bacillus sp. DAU101 exhibits 88 and 30 % similarity to those from Bacillus subtilis and Pseudomonas sp., respectively. The chitosanase was purified by glutathione S-transferase fusion purification system. The molecular weight of purified enzyme was about 27 kDa, which suggests the deletion of a signal peptide by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The pH and temperature optima of the enzyme were 7.5 and 50 °C, respectively. The enzyme activity was increased by about 1.6-fold by the addition of 5 or 10 mM Ca2+. However, Hg2+ and Ni+ ions strongly inhibited the enzyme. The enzyme produced, GlcN2–4, were the major products from a soluble chitosan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号