首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The semicircular canals (SCs) of the inner ear detect angular acceleration and are located in the bony labyrinth of the petrosal bone. Based on high-resolution computed tomography, we created a size-independent database of the bony labyrinth of 50 mammalian species especially rodents of the squirrel-related clade comprising taxa with fossorial, arboreal and gliding adaptations. Our sampling also includes gliding marsupials, actively flying bats, the arboreal tree shrew and subterranean species. The morphometric anatomy of the SCs was correlated to the locomotion mode. Even if the phylogenetic signal cannot entirely be excluded, the main significance for functional morphological studies has been found in the diameter of the SCs, whereas the radius of curvature is of minor interest. Additionally, we found clear differences in the bias angle of the canals between subterranean and gliding taxa, but also between sciurids and glirids. The sensitivity of the inner ear correlates with the locomotion mode, with a higher sensitivity of the SCs in fossorial species than in flying taxa. We conclude that the inner ear of flying and gliding mammals is less sensitive due to the large information flow into this sense organ during locomotion.  相似文献   

2.
The vertebrate inner ear consists of a complex labyrinth of epithelial cells that is surrounded by a bony capsule. The molecular mechanisms coordinating the development of the membranous and bony labyrinths are largely unknown. Previously, using avian retrovirus encoding Noggin (RCAS-Noggin) or beads soaked with Noggin protein, we have shown that bone morphogenetic proteins (BMPs) are important for the development of the otic epithelium in the chicken inner ear. Here, using two additional recombinant avian retroviruses, dominant negative and constitutively active forms of BMP receptors IB (BMPRIB), we show that BMPs, possibly acting through BMPRIB, are important for otic capsule formation. We also show that Bmp2 is strongly expressed in the prospective semicircular canals starting from the canal outpouch stage, suggesting that BMP2 plays an important role in canal formation. In addition, by correlating expression patterns of Bmps, their receptors, and localization of phosphorylated R-Smad (phospho R-Smad) immunoreactivity, an indicator of BMP activation, we show that BMPs emanating from the otic epithelium influence chondrogenesis of the otic capsule including the cartilage surrounding the semicircular canals.  相似文献   

3.
The knowledge of intraspecific variation is important to make assumptions on an interspecific level. To study intraspecific variation in the bony labyrinth morphology of the domestic cat, eleven specimens of Felis silvestris catus and two additional subspecies (F. s. lybica, F. s. ornata) were investigated. The sample comprises skulls of adult males and females, as well as juvenile cats. Each bony labyrinth endocast was virtually reconstructed based on µCT scans. To estimate the radius of curvature of each inner ear semicircular canal, three different approaches were tested. The comparison of the different methods resulted in different absolute values for the measured radii. The assumed best structure to precisely characterize the size of a semicircular canal is the inner perimeter. Within the tested sample, the anterior semicircular canal is always the largest, while the posterior semicircular canal is the second largest and the lateral semicircular canal the smallest in most cases. The coefficient of variation lies below 10% for all bony labyrinth measurements within the sample. The inner perimeter values of each semicircular canal are similar within all investigated specimens, even though the skull length of adult cats is twice as long as that of juvenile cats. Thus, inner ear biometry of the domestic cat seems stable throughout growth series and can therefore be used for systematic and ecological studies and the inclusion of juvenile individuals is reasonable. It is noteworthy that the inner perimeter values of the semicircular canals do not vary as much as the values of the angles spanned between the three canals within the sample. The inner ear within the cat skull is oriented about 25° to 31° to the palate (angle between the plane anchored to the lateral semicircular canals (SC) and the plane anchored to the palate). The cochlea coils between 3.00 and 3.25 turns in the investigated sample.  相似文献   

4.
《Palaeoworld》2019,28(4):550-561
Mosasaurs were among the last marine reptiles that lived before the Cretacesous–Paleogene extinction. Little is known about the sensory evolution of mosasaurs in relation to their aquatic lifestyle. In this study, the braincase of Platecarpus was CT-scanned and virtual models were constructed showing the bony labyrinth — or the inner ear — a sensory apparatus for balance and hearing. The virtual inner ear consists of the semicircular canals, vestibule, and cochlea. Compared with extant squamates, Platecarpus resembles sea snakes in having a small vestibule with a flat dorsal surface, but it differs from non-mosasaurian squamates in having rounded semicircular canals. Phylogenetic linear regression analysis supports a linear relationship, independent from phylogeny, between the length of the three semicircular canals and the length of the skull. The semicircular canals of Platecarpus are shorter than predicted, but the fossil data fell within the 95% prediction interval calculated from the extant data and the skull length of Platecarpus. Although size reduction of the bony labyrinth has been associated with aquatic adaptions in mammals, our results suggest that in squamates, semicircular canal size is related to skull size rather than habitat preference.  相似文献   

5.
6.
《Journal of morphology》2017,278(9):1168-1184
Anoplotheriinae are Paleogene European artiodactyls that present a unique postcranial morphology with a tridactyl autopodium and uncommon limb orientation. This peculiar morphology led to various hypotheses regarding anoplotheriine locomotion from semiaquatic to partly arboreal or partly bipedal. The petrosal bone, housing the organs of balance, and hearing, offers complementary information to postcranial morphology on the ecology of this uncommon artiodactyl. Here, we investigate the middle ear and bony labyrinth of the small anoplotheriine Diplobune minor based on four specimens from the Early Oligocene locality of Itardies (Quercy, France). A macroscopic study coupled with a μCT scan investigation of the petrosal anatomy provides novel information on the bony labyrinth, stapes, and innervation and vasculature of the inner ear of this enigmatic taxon. The petrosal of D. minor exhibits a mosaic of plesiomorphic characters and peculiar features that shed new light into the anatomy of this poorly studied taxon of an obscure taxonomic clade. We can confidently reject that D. minor was a semiaquatic species based on the petrosal morphology: presence of a large mastoid process and nonpachyostotic tegmen tympani do not support underwater hearing. On the other hand, the average semicircular canal radius points to a slow or medium slow agility for D. minor , and fully rejects it was a fast moving animal, which is congruent with its postcranial anatomy.  相似文献   

7.
This paper presents a comprehensive comparative analysis of the Neanderthal bony labyrinth, a structure located inside the petrous temporal bone. Fifteen Neanderthal specimens are compared with a Holocene human sample, as well as with a small number of European Middle Pleistocene hominins, and early anatomically modern and European Upper Palaeolithic humans. Compared with Holocene humans the bony labyrinth of Neanderthals can be characterized by an anterior semicircular canal arc which is smaller in absolute and relative size, is relatively narrow, and shows more torsion. The posterior semicircular canal arc is smaller in absolute and relative size as well, it is more circular in shape, and is positioned more inferiorly relative to the lateral canal plane. The lateral semicircular canal arc is absolutely and relatively larger. Finally, the Neanderthal ampullar line is more vertically inclined relative to the planar orientation of the lateral canal. The European Upper Palaeolithic and early modern humans are most similar, although not fully identical to Holocene humans in labyrinthine morphology. The European Middle Pleistocene hominins show the typical semicircular canal morphology of Neanderthals, with the exception of the arc shape and inferiorly position of the posterior canal and the strongly inclined ampullar line. The marked difference between the labyrinths of Neanderthals and modern humans can be used to assess the phylogenetic affinities of fragmentary temporal bone fossils. However, this application is limited by a degree of overlap between the morphologies. The typical shape of the Neanderthal labyrinth appears to mirror aspects of the surrounding petrous pyramid, and both may follow from the phylogenetic impact of Neanderthal brain morphology moulding the shape of the posterior cranial fossa. The functionally important arc sizes of the Neanderthal semicircular canals may reflect a pattern of head movements different from that of modern humans, possibly related to aspects of locomotor behaviour and the kinematic properties of their head and neck.  相似文献   

8.
The vestibular system of the inner ear detects the motions of the head and is involved in maintaining balance. For this reason, this organ has been deeply studied and several scientists have tried to link its morphology with the locomotor behavior of an animal. Via high-resolution computed microtomography and geometric morphometric methods, we analyzed the intraspecific variation of the 3D morphology of the bony labyrinth (inner ear) in four species of primates differing in their locomotor adaptations: two being slow-moving taxa (Nycticebus and Perodicticus), and two being fast-moving taxa (Callithrix and Microcebus). Basically, there are very few analyses of the inter-individual variation of this organ in mammals in general, and this approach has never been attempted in primates thus far. Our results show that variation of the bony labyrinth morphology is expressed by the same ways in the different species (e.g., differences in the size, shape, and orientation of the semicircular canals, and in the width and height of the cochlea), but that slow-moving taxa exhibit a higher amount of intraspecific variation than do fast-moving taxa. Our results strengthen support for a previously published hypothesis, according to which a relaxation of the selective pressure applied to the morphology of the bony labyrinth is the likely reason for this higher amount of intraspecific variation in slow-moving taxa, and that it may be related to a reduced functional demand for rapid postural adjustments.  相似文献   

9.
10.
《Journal of morphology》2017,278(6):742-749
Diprotodontia represents the largest and ecologically most distinct order of marsupials occurring in Australasian being highly divers in size, locomotion, habitat preferences, feeding, and activity pattern. The spatial orientation in the habitat and therefore the three‐dimensional space is detected by the vestibular system of the inner ear, more precisely by the three semicircular canals. In this study, we investigated the bony labyrinth of diprotodontian and selected non‐diprotodontian marsupial mammals of almost all genera with noninvasive micro‐CT scanning and 3D‐reconstructions. In principal component analyses, the subterranean taxon can be separated from gliding and saltatorial taxa, whereas arboreal species can be separated from saltatorial specimens. The highest PCA loadings of this functional distinction are clearly found in the diameter of the semicircular canals, whereas the overall shape (height, width, length) of the semicircular canals is less important. Additionally, the investigated arboreal and fossorial species of South America are nested in the morphospace of the Australasian taxa. Even if a phylogenetic signal in the anatomy of the bony labyrinth cannot be excluded entirely, the main functional morphological signal of the vestibular system is found in the diameter of the semicircular canals. With the large dataset of extant marsupial mammals analysed here, the locomotion mode of extinct taxa can be inferred in future studies independent of any evidence of postcranial material.  相似文献   

11.
The semicircular canals of the labyrinth of vertebrates provide one way of motion detection in three-dimensional space. The fully developed form of the vertebrate labyrinth consists of six semicircular canals, three on each side of the head, whose spatial arrangement (vertical canals are placed diagonally in the head, horizontal canals are oriented earth horizontally) follows three interconnected principles: 1) bilateral symmetry, 2) push-pull operational mode, and 3) mutual orthogonality. Other sensory and motor systems related to vestibular reflexes, such as the extraocular muscles or the "optokinetic" coordinate axes encoded in the activity of the visually driven cells of the accessory optic system, share the same geometrical framework. This framework is also reflected in the anatomical networks mediating compensatory eye movements, linking each of the semicircular canals to a particular set of extraocular muscles (so-called principal vestibuloocular reflex connections to yoke muscles). These classical vestibulo-oculomotor relationships have been verified at many levels of the vertebrate hierarchy, including lateral- and frontal-eyed animals. The particular spatial orientation of the semicircular canals requires further comment and phylogenetic evaluation. The spatial arrangement of the vertical canals is already present in fossil ostracoderms, and is also exemplified in lampreys, the modern forms of once abundant agnathan species that populated the Silurian and Devonian oceans. The lampreys and ostracoderms lack horizontal canals, which appear later in all descendent vertebrates. The fully developed vertebrate labyrinth with its six semicircular canals displays distinct differences that are obvious when comparing distant taxa (e.g. elasmobranchs versus other vertebrates). Whereas the common crus of the semicircular canals in teleosts through mammals is formed between the anterior and the posterior semicircular canal, it occurs between the anterior and the horizontal canal in elasmobranchs. However, despite this morphological difference, these two vertebrate labyrinth prototypes constitute a functionally identical solution. A similar analysis holds for certain invertebrate species (crab, octopus, squid), which display an even wider variety in the physical expressions of movement detection systems when compared to vertebrates. Although the physical expressions of motion detection systems differ in the animal kingdom, the functional solutions (providing the best signal-to-noise ratio) with adherence to bilateral symmetry, push-pull operational mode, and mutual orthogonality are identical.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The epithelial components of the vertebrate inner ear and its associated ganglion arise from the otic placode. The cell types formed include neurons, hair-cell mechanoreceptors, supporting cells, secretory cells that make endolymphatic fluid or otolithic membranes, and simple epithelial cells lining the fluid-filled cavities. The epithelial sheet is surrounded by an inner layer of connective and vascular tissues and an outer capsule of bone. To explore the mechanisms of cell fate specification in the ear, retrovirus-mediated lineage analysis was performed after injecting virus into the chicken otocyst on embryonic days 2.5-5.5. Because lineage analysis might reveal developmental compartments, an effort was made to study clonal dispersion by sampling infected cells from different parts of the same ear, including the auditory ganglion, cochlea, saccule, utricle, and semicircular canals. Lineage relationships were confirmed for 75 clones by amplification and sequencing of a variable DNA tag carried by each virus. While mesenchymal clones could span different structural parts of the ear, epithelial clones did not. The circumscribed epithelial clones indicated that their progenitors were not highly migratory. Ganglion cell clones, in contrast, were more dispersed. There was no evidence for a common lineage between sensory cells and their associated neurons, a prediction based on a proposal that the ear sensory organs and fly mechanosensory organs are evolutionarily homologous. As expected, placodal derivatives were unrelated to adjacent mesenchymal cells or to nonneuronal cells of the ganglion. Within the otic capsule, fibroblasts and cartilage cells could be related by lineage.  相似文献   

13.
The mammalian inner ear comprises the cochleovestibular labyrinth, derived from the ectodermal otic placode, and the encasing bony labyrinth of the temporal bone. Epithelial-mesenchymal interactions are thought to control inner ear development, but the modes and the molecules involved are largely unresolved. We show here that, during the precartilage and cartilage stages, Fgf9 is expressed in specific nonsensory domains of the otic epithelium and its receptors, Fgfr1(IIIc) and Fgfr2(IIIc), widely in the surrounding mesenchyme. To address the role of Fgf9 signaling, we analyzed the inner ears of mice homozygous for Fgf9 null alleles. Fgf9 inactivation leads to a hypoplastic vestibular component of the otic capsule and to the absence of the epithelial semicircular ducts. Reduced proliferation of the prechondrogenic mesenchyme was found to underlie capsular hypoplasticity. Semicircular duct development is blocked at the initial stages, since fusion plates do not form. Our results show that the mesenchyme directs fusion plate formation and they give direct evidence for the existence of reciprocal epithelial-mesenchymal interactions in the developing inner ear. In addition to the vestibule, in the cochlea, Fgf9 mutation caused defects in the interactions between the Reissner's membrane and the mesenchymal cells, leading to a malformed scala vestibuli. Together, these data show that Fgf9 signaling is required for inner ear morphogenesis.  相似文献   

14.
Studies on the elasmobranch inner ear have focused predominantly on a small group of sharks, particularly, carcharhinids. As a result, subsequent studies in other species have subdivided species into two main groups: those typical and those atypical of carcharhinid sharks. This study proposes a different set of inner‐ear morphology groupings to those previously suggested. The inner ears from 17 species of elasmobranchs (representing both sharks and rays) are examined in this study and based on morphometric data some groups include both rays and sharks. Four groups are now proposed based predominantly on the shape and dimensions of the membranous otoconial organs, and characteristics of the semicircular canals. Evident morphological differences between the ear types belonging to the new groups include the membranes of the semicircular canals being bound to the otoconial organs in some species, while only being connected via the canal ducts in others, as well as clear variation present in saccular organ size. Previous studies examining variation in the inner ear have attributed differences to either phylogeny or functional significance. Results from this study suggest that neither phylogeny nor feeding strategy solely accounts for the morphological diversity present in the external morphology of the elasmobranch inner ear. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Using the non-destructive technique of 3-D micro computed tomography (3-D-μCT), we present a new, virtual reconstruction of the Le Moustier 1 Neandertal skull. This new reconstruction corrects defects found in earlier reconstruction attempts by repositioning misaligned cranial fragments, addressing the problem of asymmetry caused by pressure during the fossilization process, and placing the basioccipital in its proper anatomical position. Metric comparisons between Le Moustier 1 and juvenile and adult Neandertals demonstrate that facial height proceeded at a faster rate of growth than facial prognathism at the beginning of the adolescent period. They also confirm the anterior placement of the basioccipital. A compound painted to match the colour of the fossilized bone was used in previous reconstruction attempts and the aim of this analysis was to remove the false material to reveal to what extent the fossilized bone was preserved. The areas with the most artificial material and glue include the palate, areas around the mandibular teeth, the left frontal, and parts of the right parietal and temporal bones. The μCT data were also used to examine internal structures of the skull including the frontal sinus and the labyrinth of the inner ear. An investigation of the frontal sinus reveals morphology similar to that found in adult Neandertals, although the structure does not extend to mid-orbit. The dimension of the radius of curvature of the lateral semicircular canal falls within one standard deviation, and the anterior and posterior canals within two standard deviations, of the published Neandertal mean. As in other Neandertals, the posterior semicircular canal is in an inferior position relative to the plane of the lateral canal.  相似文献   

16.
17.
The structure and function of the craniate inner ear is reviewed, with 33 apomorphic characters of the membranous labyrinth and associated structures identified in craniates, gnathostomes, and elasmobranchs. Elasmobranchs are capable of low-frequency semi-directional phonoreception, even in the absence of any pressure-to-displacement transducer such as ear ossicles. The endolymphatic (parietal) fossa, semicircular canals, and crista (macula) neglecta are all adapted toward phonoreception. Some (but not all) of the morphological features associated with phonoreception can be inferred from the elasmobranch skeletal labyrinth. Endocranial spaces such as the skeletal labyrinth also provide suites of morphological characters that may be incorporated into phylogenetic analyses, irrespective of how closely these spaces reflect underlying soft anatomy. The skeletal labyrinths of Squalus and Notorynchus are compared using silicone endocasts and high-resolution CT-scanning. The latter procedure offers several advantages over other techniques; it is more informative, nondestructive, preserves relationships of surrounding structures, and it can be applied both to modern and fossil material.  相似文献   

18.
Using the non-destructive technique of 3-D micro computed tomography (3-D-μCT), we present a new, virtual reconstruction of the Le Moustier 1 Neandertal skull. This new reconstruction corrects defects found in earlier reconstruction attempts by repositioning misaligned cranial fragments, addressing the problem of asymmetry caused by pressure during the fossilization process, and placing the basioccipital in its proper anatomical position. Metric comparisons between Le Moustier 1 and juvenile and adult Neandertals demonstrate that facial height proceeded at a faster rate of growth than facial prognathism at the beginning of the adolescent period. They also confirm the anterior placement of the basioccipital. A compound painted to match the colour of the fossilized bone was used in previous reconstruction attempts and the aim of this analysis was to remove the false material to reveal to what extent the fossilized bone was preserved. The areas with the most artificial material and glue include the palate, areas around the mandibular teeth, the left frontal, and parts of the right parietal and temporal bones. The μCT data were also used to examine internal structures of the skull including the frontal sinus and the labyrinth of the inner ear. An investigation of the frontal sinus reveals morphology similar to that found in adult Neandertals, although the structure does not extend to mid-orbit. The dimension of the radius of curvature of the lateral semicircular canal falls within one standard deviation, and the anterior and posterior canals within two standard deviations, of the published Neandertal mean. As in other Neandertals, the posterior semicircular canal is in an inferior position relative to the plane of the lateral canal.  相似文献   

19.
The dimensions of the semicircular canals and the respective ampullae of a complete labyrinth caste of Brachiosaurus Brancai were determined. Using the equation of motion and the dimensions of the semicircular canals the behaviour of the endolymph displacement of the Brachiosaurus labyrinth was calculated. The time constants of the system were found to be between the values 4 sec and 13 sec for T1 and 0.2 sec and 0.5 sec for T2. From these results it was concluded, that the head movements of the animal occurred in a range between 0.02 and 0.1 cps.  相似文献   

20.
In the mouse embryo, Dlx5 is expressed in the otic placode and vesicle, and later in the semicircular canals of the inner ear. In mice homozygous for a null Dlx5/LacZ allele, a severe dysmorphogenesis of the vestibular region is observed, characterized by the absence of semicircular canals and the shortening of the endolymphatic duct. Minor defects are observed in the cochlea, although Dlx5 is not expressed in this region. Cristae formation is severely impaired; however, sensory epithelial cells, recognized by calretinin immunostaining, are present in the vestibular epithelium of Dlx5(-/-) mice. The maculae of utricle and saccule are present but cells appear sparse and misplaced. The abnormal morphogenesis of the semicircular canals is accompanied by an altered distribution of proliferating and apoptotic cells. In the Dlx5(-/-) embryos, no changes in expression of Nkx5.1(Hmx3), Pax2, and Lfng have been seen, while expression of bone morphogenetic protein-4 (Bmp4) was drastically reduced. Notably, BMP4 has been shown to play a fundamental role in vestibular morphogenesis of the chick embryo. We propose that development of the semicircular canals and the vestibular inner ear requires the independent control of several homeobox genes, which appear to exert their function via tight regulation of BPM4 expression and the regional organization of cell differentiation, proliferation, and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号