首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurobiology and evolution of cannabinoid signalling   总被引:11,自引:0,他引:11  
The plant Cannabis sativa has been used by humans for thousands of years because of its psychoactivity. The major psychoactive ingredient of cannabis is Delta(9)-tetrahydrocannabinol, which exerts effects in the brain by binding to a G-protein-coupled receptor known as the CB1 cannabinoid receptor. The discovery of this receptor indicated that endogenous cannabinoids may occur in the brain, which act as physiological ligands for CB1. Two putative endocannabinoid ligands, arachidonylethanolamide ('anandamide') and 2-arachidonylglycerol, have been identified, giving rise to the concept of a cannabinoid signalling system. Little is known about how or where these compounds are synthesized in the brain and how this relates to CB1 expression. However, detailed neuroanatomical and electrophysiological analysis of mammalian nervous systems has revealed that the CB1 receptor is targeted to the presynaptic terminals of neurons where it acts to inhibit release of 'classical' neurotransmitters. Moreover, an enzyme that inactivates endocannabinoids, fatty acid amide hydrolase, appears to be preferentially targeted to the somatodendritic compartment of neurons that are postsynaptic to CB1-expressing axon terminals. Based on these findings, we present here a model of cannabinoid signalling in which anandamide is synthesized by postsynaptic cells and acts as a retrograde messenger molecule to modulate neurotransmitter release from presynaptic terminals. Using this model as a framework, we discuss the role of cannabinoid signalling in different regions of the nervous system in relation to the characteristic physiological actions of cannabinoids in mammals, which include effects on movement, memory, pain and smooth muscle contractility. The discovery of the cannabinoid signalling system in mammals has prompted investigation of the occurrence of this pathway in non-mammalian animals. Here we review the evidence for the existence of cannabinoid receptors in non-mammalian vertebrates and invertebrates and discuss the evolution of the cannabinoid signalling system. Genes encoding orthologues of the mammalian CB1 receptor have been identified in a fish, an amphibian and a bird, indicating that CB1 receptors may occur throughout the vertebrates. Pharmacological actions of cannabinoids and specific binding sites for cannabinoids have been reported in several invertebrate species, but the molecular basis for these effects is not known. Importantly, however, the genomes of the protostomian invertebrates Drosophila melanogaster and Caenorhabditis elegans do not contain CB1 orthologues, indicating that CB1-like cannabinoid receptors may have evolved after the divergence of deuterostomes (e.g. vertebrates and echinoderms) and protostomes. Phylogenetic analysis of the relationship of vertebrate CB1 receptors with other G-protein-coupled receptors reveals that the paralogues that appear to share the most recent common evolutionary origin with CB1 are lysophospholipid receptors, melanocortin receptors and adenosine receptors. Interestingly, as with CB1, each of these receptor types does not appear to have Drosophila orthologues, indicating that this group of receptors may not occur in protostomian invertebrates. We conclude that the cannabinoid signalling system may be quite restricted in its phylogenetic distribution, probably occurring only in the deuterostomian clade of the animal kingdom and possibly only in vertebrates.  相似文献   

2.
Ligand binding to the thrombopoietin receptor is thought to stabilize an active receptor dimer that regulates megakaryocyte differentiation and platelet formation, as well as haematopoietic stem cell renewal. By fusing a dimeric coiled coil in all seven possible orientations to the thrombopoietin receptor transmembrane (TM)-cytoplasmic domains, we show that specific biological effects and in vivo phenotypes are imparted by distinct dimeric orientations, which can be visualized by cysteine mutagenesis and crosslinking. Using functional assays and computational searches, we identify one orientation that represents the inactive dimeric state and another similar to a physiologically activated receptor. Several other dimeric orientations are identified that induce proliferation and in vivo myeloproliferative and myelodysplastic disorders, indicating the receptor can signal from several dimeric interfaces. The set of dimeric thrombopoietin receptors with different TM orientations may offer new insights into the activation of distinct signalling pathways by a single receptor and suggests that subtle differences in cytokine receptor dimerization provide a new layer of signalling regulation that is relevant for disease.  相似文献   

3.
Ever since the discovery of the effects of adenosine in the circulation, adenosine receptors continue to represent a promising drug target. Firstly, this is due to the fact that the receptors are expressed in a large variety of cells; in particular, the actions of adenosine (or, respectively, of the antagonistic methylxanthines) in the central nervous system, in the circulation, on immune cells and on other tissues can be beneficial in certain disorders. Secondly, there exists a large number of ligands, which have been generated by introducing several modifications in the structure of the lead compounds (adenosine and methylxanthine), some of them highly specific. Four adenosine receptor subtypes have been identified by molecular cloning; they belong to the family of G protein-coupled receptors, which transfer signals by activating heterotrimeric G proteins. It has been appreciated recently that accessory proteins impinge on the receptor/G protein interaction and thus modulate the signalling reaction. These accessory components may be thought as adaptors that redirect the signalling pathway to elicit a cell-specific response. Here, we review the recent literature on adenosine receptors and place a focus on the role of accessory proteins in the organisation of adenosine receptor signalling. These components have been involved in receptor sorting, in the control of signal amplification and in the temporal regulation of receptor activity, while the existence of others is postulated on the basis of atypical cellular reactions elicited by receptor activation.  相似文献   

4.
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.  相似文献   

5.
The serine and aspartate chemosensory receptors (Tsr and Tar) of Escherichia coli have two membrane-spanning regions TM1 and TM2. To investigate their roles in transmembrane signalling, we constructed two chimeric receptors from Tsr and Tar with heterologous combinations of TM1 and TM2: the N-terminus of one receptor, including TM1 and the periplasmic domain, was fused to the C-terminus of the other, beginning with TM2. Both of the chimeric receptor genes rescued the chemotactic defect of a receptorless E. coli strain, indicating that the chimeric receptors are functional. Their apparent affinities for the specific ligands were the same as those of Tsr or Tar. Therefore, as far as transmembrane signalling abilities are concerned, the TW2 regions of Tsr and Tar are interchangeable, suggesting that sequence-specific interaction between TM1 and TM2 may not be required for the signal transmission across the membrane. The cells expressing either of the chimeric receptors, however, showed ‘smooth’, biased, basal swimming patterns. Moreover, they adapted quickly after stimulation with the repellent glycerol. This rapid adaptation was observed even in the methyltransferase-defective strain. Therefore, exchange of TM2 might impose structural constraints on the chimeric receptors that stabilize conformations which elicit smooth swimming.  相似文献   

6.
In the Escherichia coli chemotaxis system, a family of chemoreceptors in the cytoplasmic membrane binds stimulatory ligands and regulates the activity of an associated histidine kinase CheA to modulate swimming behaviour and thereby cause a net migration towards attractants and away from repellents. The chemoreceptors themselves have been shown to be predominantly dimeric, but in the presence of the kinase CheA plus an adapter protein, CheW, much higher order structures have been observed. Recent results indicate that transmembrane signalling occurs within receptor clusters rather than through isolated dimers. We propose that the mechanism involves receptor arrays where binding of ligands at the outside surface of the membrane affects lateral packing interactions that cause perturbations in the organization of the signalling array at the opposing surface of the membrane. Results with receptor chimeras as well as findings with tyrosine kinase receptors suggest that this mechanism may represent a common theme in membrane receptor function.  相似文献   

7.
Hrs mediates downregulation of multiple signalling receptors in Drosophila   总被引:3,自引:0,他引:3  
Jékely G  Rørth P 《EMBO reports》2003,4(12):1163-1168
Endocytosis and subsequent lysosomal degradation of activated signalling receptors can attenuate signalling. Endocytosis may also promote signalling by targeting receptors to specific compartments. A key step regulating the degradation of receptors is their ubiquitination. Hrs/Vps27p, an endosome-associated, ubiquitin-binding protein, affects sorting and degradation of receptors. Drosophila embryos mutant for hrs show elevated receptor tyrosine kinase (RTK) signalling. Hrs has also been proposed to act as a positive mediator of TGF-β signalling. We find that Drosophila epithelial cells devoid of Hrs accumulate multiple signalling receptors in an endosomal compartment with high levels of ubiquitinated proteins: not only RTKs (EGFR and PVR) but also Notch and receptors for Hedgehog and Dpp (TGF-β related). Hrs is not required for Dpp signalling. Instead, loss of Hrs increases Dpp signalling and the level of the type-I receptor Thickveins (Tkv). Finally, most hrs-dependent receptor turnover appears to be ligand independent. Thus, both active and inactive signalling receptors are targeted for degradation in vivo and Hrs is required for their removal.  相似文献   

8.
Cell signalling through thromboxane A2 receptors   总被引:6,自引:0,他引:6  
Thromboxane A2 receptors (TPs) are widely distributed among different organ systems and have been localized on both cell membranes and intracellular structures. Following the initial cloning of this receptor class from human placenta, the deduced amino acid sequence predicted seven-transmembrane spanning regions, four extracellular domains and four intracellular domains, making TP a member of the seven-transmembrane G-protein-coupled receptor (GPCR) super family. A single gene on chromosome 19p13.3 leads to the expression of two separate TP isoforms: TPalpha which is broadly expressed in numerous tissues, and a splice variant termed TPbeta which may have a more limited tissue distribution. Mutagenesis, photoaffinity labelling, and immunological studies have indicated that the ligand binding domains for this receptor may reside in both the transmembrane (TM) and extracellular regions of the receptor protein. In addition, separate studies have provided evidence that this receptor can couple to at least four separate G protein families. As a consequence, TP signalling has been shown to result in a broad range of cellular responses including phosphoinositide metabolism, calcium redistribution, cytoskeletal arrangement, integrin activation, kinase activation, and the subsequent nuclear signalling events involved in DNA synthesis, cell proliferation, cell survival and cell death. While activation of these different signalling cascades can all derive from TP stimulation, the relative signalling preference for a given cascade appears to be both tissue and cell specific. Finally, separate studies have indicated that TP signalling capacity can be both down-regulated by protein kinase activation and up-regulated by GPCR cross-signalling. Thus, the multitude of signalling events which derive from TP activation can themselves be modulated by endogenous cellular messengers.  相似文献   

9.
The critical involvement of GPCRs (G-protein-coupled receptors) in nearly all physiological processes, and the presence of these receptors at the interface between the extracellular and the intracellular milieu, has positioned these receptors as pivotal therapeutic targets. Although a large number of drugs targeting GPCRs are currently available, significant efforts have been directed towards understanding receptor properties, with the goal of identifying and designing improved receptor ligands. Recent advances in GPCR pharmacology have demonstrated that different ligands binding to the same receptor can activate discrete sets of downstream effectors, a phenomenon known as 'ligand-directed signal specificity', which is currently being explored for drug development due to its potential therapeutic advantage. Emerging studies suggest that GPCR responses can also be modulated by contextual factors, such as interactions with other GPCRs. Association between different GPCR types leads to the formation of complexes, or GPCR heteromers, with distinct and unique signalling properties. Some of these heteromers activate discrete sets of signalling effectors upon activation by the same ligand, a phenomenon termed 'heteromer-directed signalling specificity'. This has been shown to be involved in the physiological role of receptors and, in some cases, in disease-specific dysregulation of a receptor effect. Hence targeting GPCR heteromers constitutes an emerging strategy to select receptor-specific responses and is likely to be useful in achieving specific beneficial therapeutic effects.  相似文献   

10.
11.
New DC  Wong YH 《Neuro-Signals》2002,11(4):197-212
The cloning of the opioid-receptor-like 1 (ORL(1)) receptor and the identification of nociceptin as its endogenous agonist have revealed a new G-protein-coupled receptor signalling system. The structural and functional homology of ORL(1) to the opioid receptor systems has posed a number of challenges in understanding the often competing physiological responses elicited by these G-protein-coupled receptors. Thus, this review will attempt to summarize recent research by many groups that has revealed numerous subtleties of the ORL(1) receptor and its signalling pathways, as well as document the efforts to produce high-affinity selective ligands for the ORL(1) receptor that may be of value as research and therapeutic tools.  相似文献   

12.
The collagen-platelet interaction is central to haemostasis and may be a critical determinant of arterial thrombosis, where subendothelium is exposed after rupture of atherosclerotic plaque. Recent research has capitalized on the cloning of an important signalling receptor for collagen, glycoprotein VI, which is expressed only on platelets, and on the use of collagen-mimetic peptides as specific tools for both glycoprotein VI and integrin alpha 2 beta 1. We have identified sequences, GPO and GFOGER (where O denotes hydroxyproline), within collagen that are recognized by the collagen receptors glycoprotein VI and integrin alpha 2 beta 1 respectively, allowing their signalling properties and specific functional roles to be examined. Triple-helical peptides containing these sequences were used to show the signalling potential of integrin alpha 2 beta 1, and to confirm its important contribution to platelet adhesion. Glycoprotein VI appears to operate functionally on the platelet surface as a dimer, which recognizes GPO motifs that are separated by four triplets of collagen sequence. These advances will allow the relationship between the structure of collagen and its haemostatic activity to be established.  相似文献   

13.
The semaphorins constitute a large family of molecular signals with regulatory functions in neuronal development, angiogenesis, cancer progression and immune responses. Accumulating data indicate that semaphorins might trigger multiple signalling pathways, and mediate different and sometimes opposing effects, depending on the cellular context and the particular plexin-associated subunits of the receptor complex, which can include receptor-type or cytoplasmic tyrosine kinases such as MET, ERBB2, VEGFR2, FYN, FES, PYK2 and SRC. It has also been shown that a specific plexin can alternatively associate with different tyrosine kinase receptors, eliciting divergent signalling pathways and functional outcomes. Tyrosine phosphorylation is a pivotal post-translational protein modification that regulates intracellular signalling. Therefore, phosphorylation of tyrosines in the intracellular domain of plexins could determine or modify their interactions with additional signal transducers. Here, we discuss the potential relevance of tyrosine phosphorylation in semaphorin-induced signalling, with an emphasis on its probable role in dictating the choice between multiple pathways and functional outcomes. The identification of implicated tyrosine kinases will pave the way to target individual semaphorin-mediated functions.  相似文献   

14.
Subunits of the endosomal sorting complex required for transport (ESCRT) were identified as components of a molecular machinery that sorts ubiquitinated membrane proteins into the intraluminal vesicles (ILVs) of multivesicular endosomes (MVEs) for subsequent delivery to the lumen of lysosomes or related organelles. As many of the membrane proteins that undergo ESCRT-mediated sorting are signalling receptors that are ubiquitinated in response to ligand binding, ESCRT subunits have been hypothesized to play a crucial role in attenuation of cell signalling by mediating ligand-induced receptor degradation. Here we discuss this concept based on the examples from loss-of-function studies in model organisms and cell lines. The emerging picture is that ESCRTs are indeed involved in downregulation of receptor signalling pathways associated with cell survival, proliferation and polarity. In addition, the recent discovery of a positive role for the ESCRT pathway in Wnt signalling through sequestration of an inhibitory cytosolic component into MVEs illustrates that ESCRTs may also control signalling in ways that are independent of degradative receptor sorting.  相似文献   

15.
The type 1 and type 2 cannabinoid receptors are G protein-coupled receptors implicated in a variety of physiological processes and diseases. Synthetic cannabinoid receptor agonists (SCRAs) were originally developed to explore the therapeutic benefits of cannabinoid receptor activation, although more recently, these compounds have been diverted to the recreational drug market and are increasingly associated with incidences of toxicity. A prominent concept in contemporary pharmacology is functional selectivity or biased agonism, which describes the ability of ligands to elicit differential activation of signalling pathways through stabilisation of distinct receptor conformations. Biased agonists may maximise drug effectiveness by reducing on-target adverse effects if they are mediated by signalling pathways distinct from those that drive the therapeutic effects. For the cannabinoid receptors, it remains unclear as to which signalling pathways mediate desirable and adverse effects. However, given their structural diversity and potential to induce a plethora of signalling effects, SCRAs provide the most promising prospect for detecting and studying bias at the cannabinoid receptors. This review summarises the emerging evidence of SCRA bias at the cannabinoid receptors.  相似文献   

16.
During nervous system development different cell-to-cell communication mechanisms operate in parallel guiding migrating neurons and growing axons to generate complex arrays of neural circuits. How such a system works in coordination is not well understood. Cross-regulatory interactions between different signalling pathways and redundancy between them can increase precision and fidelity of guidance systems. Immunoglobulin superfamily proteins of the NCAM and L1 families couple specific substrate recognition and cell adhesion with the activation of receptor tyrosine kinases. Thus it has been shown that L1CAM-mediated cell adhesion promotes the activation of the EGFR (erbB1) from Drosophila to humans. Here we explore the specificity of the molecular interaction between L1CAM and the erbB receptor family. We show that L1CAM binds physically erbB receptors in both heterologous systems and the mammalian developing brain. Different Ig-like domains located in the extracellular part of L1CAM can support this interaction. Interestingly, binding of L1CAM to erbB enhances its response to neuregulins. During development this may synergize with the activation of erbB receptors through L1CAM homophilic interactions, conferring diffusible neuregulins specificity for cells or axons that interact with the substrate through L1CAM.  相似文献   

17.
G-protein-coupled receptors are hyper-phosphorylated in a process that controls receptor coupling to downstream signaling pathways. The pattern of receptor phosphorylation has been proposed to generate a "bar code" that can be varied in a tissue-specific manner to direct physiologically relevant receptor signaling. If such a mechanism existed, receptors would be expected to be phosphorylated in a cell/tissue-specific manner. Using tryptic phosphopeptide maps, mass spectrometry, and phospho-specific antibodies, it was determined here that the prototypical G(q/11)-coupled M(3)-muscarinic receptor was indeed differentially phosphorylated in various cell and tissue types supporting a role for differential receptor phosphorylation in directing tissue-specific signaling. Furthermore, the phosphorylation profile of the M(3)-muscarinic receptor was also dependent on the stimulus. Full and partial agonists to the M(3)-muscarinic receptor were observed to direct phosphorylation preferentially to specific sites. This hitherto unappreciated property of ligands raises the possibility that one mechanism underlying ligand bias/functional selectivity, a process where ligands direct receptors to preferred signaling pathways, may be centered on the capacity of ligands to promote receptor phosphorylation at specific sites.  相似文献   

18.
The human submandibular gland cell line (HSG) has been used as a model for studying the molecular mechanisms of salivary cells. The aim of this study was to investigate some aspects of salivary Ca2+ signalling. We focused on the presence and function of specific molecular markers of salivary cells to see whether this cell line retained normal salivary characteristics, despite the neoplastic changes. We detected the M3 acetylcholine receptor and intracellular salivary amylase mRNA with RT-PCR. Carbachol treatment caused a rapid, transient elevation of [Ca2+]i, showing that the cholinergic receptors are functional in HSG cells. Protein kinase C activation by phorbol-esther PMA, prior to carbachol treatment, inhibited the normal Ca2+ signalling pathway in HSG cells. Using selective antagonists, we also identified the dominant muscarinic receptor subtype M3 on HSG cells. We also observed that functional extracellular purinergic receptors were present on HSG cells and coupled to intracellular Ca2+ signalling. Our results suggested that the coupling mechanisms of these receptors remained relatively intact despite the neoplastic transformation. This enables us to use this cell line to model the role of muscarinic and purinergic control of salivary gland function, cell proliferation and differentiation.  相似文献   

19.
Lysophosphatidylinositol (LPI) is a bioactive lipid generated by phospholipase A2 which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility, in a number of cell-types, including cancer cells, endothelial cells and nervous cells. Despite the fact that LPI-induced cellular functions had been known for more than twenty years, the recent discovery that in several cell-types the orphan G protein-coupled receptor GPR55 acts as the specific receptor for LPI has fuelled novel interest in this lysolipid. Different research groups, including our own, have recently suggested that LPI may be the specific and functional ligand for GPR55, triggering signalling cascades that are relevant to cell proliferation, migration, survival and tumourigenesis. Recently published data suggest that the LPI/GPR55 axis plays an important role in different physiological and pathological contexts. Here we review the available data supporting the role of LPI in cell signalling and the pharmacology of its putative receptor GPR55.  相似文献   

20.
G-protein-coupled receptors (GPCRs) comprise a wide family of monomeric heptahelical glycoproteins that recognize a broad array of extracellular mediators including cationic amines, lipids, peptides, proteins, and sensory agents. Thus far, much attention has been given towards the comprehension of intracellular signaling mechanisms activated by cell membrane GPCRs, which convert extracellular hormonal stimuli into acute, non-genomic (e.g., hormone secretion, muscle contraction, and cell metabolism) and delayed, genomic biological responses (e.g., cell division, proliferation, and apoptosis). However, with respect to the latter response, there is compelling evidence for a novel intracrine mode of genomic regulation by GPCRs that implies either the endocytosis and nuclear translocation of peripheral-liganded GPCR and (or) the activation of nuclearly located GPCR by endogenously produced, nonsecreted ligands. A noteworthy example of the last scenario is given by heptahelical receptors that are activated by bioactive lipoids (e.g., PGE(2) and PAF), many of which may be formed from bilayer membranes including those of the nucleus. The experimental evidence for the nuclear localization and signalling of GPCRs will be reviewed. We will also discuss possible molecular mechanisms responsible for the atypical compartmentalization of GPCRs at the cell nucleus, along with their role in gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号