首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
ABSTRACT: BACKGROUND: RT-qPCR is a common tool for quantification of gene expression, but its accuracy is dependent on the choice and stability (steady state expression levels) of the reference gene/s used for normalization. To date, in the bone field, there have been few studies to determine the most stable reference genes and, usually, RT-qPCR data is normalised to non-validated reference genes, most commonly GAPDH, ACTB and 18 S rRNA. Here we draw attention to the potential deleterious impact of using classical reference genes to normalise expression data for bone studies without prior validation of their stability. RESULTS: Using the geNorm and Normfinder programs, panels of mouse and human genes were assessed for their stability under three different experimental conditions: 1) disease progression of Crouzon syndrome (craniosynostosis) in a mouse model, 2) proliferative culture of cranial suture cells isolated from craniosynostosis patients and 3) osteogenesis of a mouse bone marrow stromal cell line. We demonstrate that classical reference genes are not always the most 'stable' genes and that gene 'stability' is highly dependent on experimental conditions. Selected stable genes, individually or in combination, were then used to normalise osteocalcin and alkaline phosphatase gene expression data during cranial suture fusion in the craniosynostosis mouse model and strategies compared. Strikingly, the expression trends of alkaline phosphatase and osteocalcin varied significantly when normalised to the least stable, the most stable or the three most stable genes. CONCLUSION: To minimise errors in evaluating gene expression levels, analysis of a reference panel and subsequent normalization to several stable genes is strongly recommended over normalization to a single gene. In particular, we conclude that use of single, non-validated "housekeeping" genes such as GAPDH, ACTB and 18 S rRNA, currently a widespread practice by researchers in the bone field, is likely to produce data of questionable reliability when changes are 2 fold or less, and such data should be interpreted with due caution.  相似文献   

2.
The complexity of gene expression dynamics revealed by permutation entropy   总被引:1,自引:0,他引:1  

Background

High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity.

Results

Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes.

Conclusions

We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data.  相似文献   

3.
Nucleotide sequence comparisons of three house-keeping genes, adenylate kinase (adk), shikimate dehydrogenase (aroE), and glucose-6-phosphate dehydrogenase (gdh), were used to infer the phylogeny of 33 gamma-proteobacteria. Phylogenetic trees inferred from each gene, and from the concatenated sequences of all three genes, are, in general, similar to a 16S rRNA gene-inferred tree. Similar grouping of bacteria are revealed at the family, genus, species and strain levels in all five trees. The house-keeping genes, however, show a higher rate of nucleotide sequence substitutions. Consequently, they can possibly probe deeper branches of a phylogenetic tree than the 16S rRNA gene. However, because their nucleotide sequences are not as highly conserved among gamma-proteobacteria, family- or genus-specific primers would need to be designed for the amplification of any of these three house-keeping genes. Since these genes are used in multilocus sequence typing, it is expected that the number of sequences publicly available for many taxa will increase over time proving them very useful either at complementing 16S rRNA-inferred phylogenies or for specific, targeted, phylogenetic analysis.  相似文献   

4.
植物基因表达转录分析中内参基因的选择与应用   总被引:2,自引:0,他引:2  
管家基因能够在生物体细胞中表达和不断地被转录,对于维持细胞功能发挥重要作用,并在细胞中组成型稳定表达。随着基因表达研究的深入,发现许多管家基因的表达也受到不同程度的调控。选择合适的管家基因作为内参对于准确定量分析目标基因的表达水平至关重要。通过对植物基因表达研究中常用的内参对照基因的表达特性,综述了可以筛选作为内参对照基因的标准和条件的验证。  相似文献   

5.
6.
7.
8.
The potential of different house-keeping genes for their use as internal standards of gene expression under changing environmental conditions and in different organs of plants was assessed. Using real-time PCR mRNA levels were precisely quantified for preselected actin and ribosomal protein genes in Arabidopsis thaliana (L.) Heinh. and Nicotiana tabacum L. grown at normal temperature and following heat stress. In tobacco leaves the mRNA levels of the constitutively expressed ribosomal protein gene Nt-L25 and the actin genes Nt-ACT9 and At-ACT66 were strongly reduced (to approximately 10%) during heat stress. Heat stress applied at the temperature optimum (37 degrees C) for elicitation of a heat stress response to Arabidopsis leaves resulted in a strong induction (several thousand-fold) of the mRNA heat shock protein genes, At-HSP17.6 and At-HSP18.2. Concomitantly, the mRNA levels of constitutively expressed actin 2 (At-ACT2) and ribosomal protein L23 (At-L23a) genes were reduced to approximately 50% of the levels in leaves incubated at room temperature. Conversely, under severe heat stress conditions (44 degrees C), the induction of At-HSP17.6 and At-HSP18.2 mRNAs was insignificant, the mRNA levels of At-ACT2 remained at approximately the same levels as in leaves incubated at room temperature, whereas the mRNA level of At-L23 declined. The mRNA levels of At-ACT2 and At-L23a examined in stem, flower and siliques of Arabidopsis plants grown under non-stress condition showed differential alterations; the mRNA level of ribosomal protein L23 correlates with the metabolic activity of tissues. The potential use of house-keeping gene expression as standards in expression profiling and the mechanisms modulating the mRNA levels are discussed.  相似文献   

9.
A rapid quantitative analysis method for murine endothelin-1 (ET-1) and vasoactive intestinal contractor (VIC) gene expression levels was established using a real-time polymerase chain reaction (PCR). We designed primer pairs and TaqMan probes specific for murine prepro-ET-1 (PPET-1) and prepro-VIC (PPVIC) genes, based on the cDNA sequence region common to both mouse and rat. The dynamic range for detection in this system spanned 100000-fold of the starting molecule. The gene expression levels of PPET-1 and PPVIC were estimated as gene expression rates normalized by the expression of the house-keeping gene, glyceraldehyde-3-phosphate dehydrogenase. To examine the reproducibility of this assay system, we calculated the intra-assay and interassay coefficients of variation of the gene expression rate, which ranged from 16.2 to 55.0% and from 24.2 to 56. 5%, respectively. Using this system, we examined gene expression levels of PPET-1 and PPVIC in mouse tissues. PPET-1 gene expression was found in all tissues at relatively high levels, whereas high levels of PPVIC gene expression were observed only in stomach, intestine, uterus, and ovary. The gene expression patterns agreed well with those determined by RNase protection assay and conventional PCR. These results show that this new rapid method is accurate and reproducible.  相似文献   

10.
甘油醛-3-磷酸脱氢酶(glyceraldehyde 3-phosphate dehydrogenase,GAPDH)是糖酵解过程中的一个酶,编码该酶的基因为管家基因,几乎在所有组织中呈高水平、恒定表达,常用作蛋白质、RNA、DNA等分子生物学相关实验的标准化内参。但近年来,GAPDH作为内参受到质疑,特别是在肿瘤组织、衰老组织。大量研究证实,GAPDH在多种肿瘤中表达上调,衰老的骨骼肌中下调。其中GAPDH在肿瘤中的高表达可能与肿瘤的侵袭性转移和细胞增殖相关。本文就GAPDH在肿瘤、衰老组织或细胞中的表达情况以及可能机制作一综述,旨在更全面地了解管家基因GAPDH在肿瘤与衰老组织、细胞中是否恒定表达,以便在研究中可以选择最优的内参做参照。  相似文献   

11.
12.
The amount of tissue-specific expression variability (EV) across individuals is an essential characteristic of a gene and believed to have evolved, in part, under functional constraints. However, the determinants and functional implications of EV are only beginning to be investigated. Our analyses based on multiple expression profiles in 41 primary human tissues show that a gene’s EV is significantly correlated with a number of features pertaining to the genomic, epigenomic, regulatory, polymorphic, functional, structural and network characteristics of the gene. We found that (i) EV of a gene is encoded, in part, by its genomic context and is further influenced by the epigenome; (ii) strong promoters induce less variable expression; (iii) less variable gene loci evolve under purifying selection against copy number polymorphisms; (iv) genes that encode inherently disordered or highly interacting proteins exhibit lower variability; and (v) genes with less variable expression are enriched for house-keeping functions, while genes with highly variable expression tend to function in development and extra-cellular response and are associated with human diseases. Thus, our analysis reveals a number of potential mediators as well as functional and evolutionary correlates of EV, and provides new insights into the inherent variability in eukaryotic gene expression.  相似文献   

13.
ABSTRACT: BACKGROUND: The selection of stable and suitable reference genes for real-time quantitative PCR (RT-qPCR) is a crucial prerequisite for reliable gene expression analysis under different experimental conditions. The present study aimed to identify reference genes as internal controls for gene expression studies by RT-qPCR in azole-stimulated Candida glabrata. RESULTS: The expression stability of 16 reference genes under fluconazole stress was evaluated using fold change and standard deviation computations with the hkgFinder tool. Our data revealed that the mRNA expression levels of three ribosomal RNAs (RDN5.8, RDN18, and RDN25) remained stable in response to fluconazole, while PGK1, UBC7, and UBC13 mRNAs showed only approximately 2.9-, 3.0-, and 2.5-fold induction by azole, respectively. By contrast, mRNA levels of the other 10 reference genes (ACT1, EF1a, GAPDH, PPIA, RPL2A, RPL10, RPL13A, SDHA, TUB1, and UBC4) were dramatically increased in C. glabrata following antifungal treatment, exhibiting changes ranging from 4.5- to 32.7-fold. We also assessed the expression stability of these reference genes using the 2-[increment][increment]CT method and three other software packages. The stability rankings of the reference genes by geNorm and the 2-[increment][increment]CT method were identical to those by hkgFinder, whereas the stability rankings by BestKeeper and NormFinder were notably different. We then validated the suitability of six candidate reference genes (ACT1, PGK1, RDN5.8, RDN18, UBC7, and UBC13) as internal controls for ten target genes in this system using the comparative CT method. Our validation experiments passed for all six reference genes analyzed except RDN18, where the amplification efficiency of RDN18 was different from that of the ten target genes. Finally, we demonstrated that the relative quantification of target gene expression varied according to the endogenous control used, highlighting the importance of the choice of internal controls in such experiments. CONCLUSIONS: We recommend the use of RDN5.8, UBC13, and PGK1 alone or the combination of RDN5.8 plus UBC13 or PGK1 as reference genes for RT-qPCR analysis of gene expression in C. glabrata following azole treatment. In contrast, we show that ACT1 and other commonly used reference genes (GAPDH, PPIA, RPL13A, TUB1, etc.) were not validated as good internal controls in the current model.  相似文献   

14.
15.
16.
Aspergillus flavus is an environmental pathogen that produces highly carcinogenic aflatoxins. Biosynthesis of aflatoxins is affected by external factors such as pH, temperature, carbon source and nitrogen source. Real-Time PCR (RT-qPCR) is a powerful technique used to detect minute changes in gene expression of a target gene in comparison to one or more reference genes. Several candidate genes were analysed to determine their suitability for use as reference genes for analysing gene expression in A. flavus via RT-qPCR under various aflatoxin conducive and non-conducive conditions. BestKeeper analysis indicated that histone H4 (hisH4) and cytochrome C oxidase subunit V (cox5) were suitable reference genes for analysis of gene expression in A. flavus via RT-qPCR. This was further confirmed by REST2009 analysis of hisH4 and cox5 stability. Furthermore, REST2009 was used to predict which gene or gene combination would be the best reference gene/s for RT-qPCR expression analysis under each treatment condition tested in this study.  相似文献   

17.
18.
19.

Background

Gene expression profiling yields quantitative data on gene expression used to create prognostic models that accurately predict patient outcome in diffuse large B cell lymphoma (DLBCL). Often, data are analyzed with genes classified by whether they fall above or below the median expression level. We sought to determine whether examining multiple cut-points might be a more powerful technique to investigate the association of gene expression with outcome.

Methodology/Principal Findings

We explored gene expression profiling data using variable cut-point analysis for 36 genes with reported prognostic value in DLBCL. We plotted two-group survival logrank test statistics against corresponding cut-points of the gene expression levels and smooth estimates of the hazard ratio of death versus gene expression levels. To facilitate comparisons we also standardized the expression of each of the genes by the fraction of patients that would be identified by any cut-point. A multiple comparison adjusted permutation p-value identified 3 different patterns of significance: 1) genes with significant cut-point points below the median, whose loss is associated with poor outcome (e.g. HLA-DR); 2) genes with significant cut-points above the median, whose over-expression is associated with poor outcome (e.g. CCND2); and 3) genes with significant cut-points on either side of the median, (e.g. extracellular molecules such as FN1).

Conclusions/Significance

Variable cut-point analysis with permutation p-value calculation can be used to identify significant genes that would not otherwise be identified with median cut-points and may suggest biological patterns of gene effects.  相似文献   

20.
斑茅两个看家基因片段的克隆及其在基因芯片中的应用   总被引:7,自引:0,他引:7  
根据已发表的同源基因序列,利用RT-PCR技术分离了斑茅(Erianthus arundinaceus)的GAPDH和APRT两个看家基因片段,用它们作为cDNA芯片阳性参照,以未经聚乙二醇(PEG)胁迫处理的斑茅叶片为对照,和PEG胁迫的4组材料同cDNA芯片进行杂交分析。杂交结果显示,GAPDH杂交的Cy5与Cy3平均信噪比(Signal/Noise,S/N)分别为56.12和60.8,APRT杂交的Cy5与Cy3平均信噪比分别为51.06和47.25,信噪比均很高;同时两个看家基因的杂交都显示出极强的信号,其中GAPDH的杂交信号值大于10000,APRT也在8000以上,杂交结果可靠。分析了PEG胁迫4个时段BADH与两个看家基因的表达,BADH的表达有明显变化,而看家基因表达均较稳定。上述结果表明所克隆的两个看家基因在斑茅中表达量高,且PEG胁迫下表达较为稳定,是基因芯片理想的阳性参照。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号