首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Efficient selection of 3'-terminal exons from vertebrate DNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
Identification of expressed sequences within genomic DNA is a hurdle in the characterization of complex genomes. We developed an exon trapping scheme that provides a positive selection for vertebrate 3'-terminal exons. A copy of the trapped exon sequence is obtained by RT/PCR amplification. The technique detects valid terminal exons without interference from partial exons or non-specific sequences, including simple human repeated sequences. Application to random human cosmids yielded one unique trapped terminal exon per cosmid on average. Because vertebrate terminal exons average 600-700 nucleotides in length, the technique provides transcribed sequences of sufficient length to assist further mapping efforts.  相似文献   

3.
Connexin 45 is a gap junction protein that is prominent in early embryos and is widely expressed in many mature cell types. To elucidate its gene structure, expression, and regulation, we isolated mouse Cx45 genomic clones. Alignment of the genomic DNA and cDNA sequences revealed the presence of three exons and two introns. The first two exons contained only 5' untranslated sequences, while exon 3 contained the remaining 5' UTR, the entire coding region, and the 3' UTR. An RT-PCR with exon-specific primers was utilized to examine exon usage in F9 mouse embryonal carcinoma cells and adult mouse tissues. In all samples, PCR products amplified using exon 2/exon 3 or exon 3/exon 3 primer pairs were much more abundant than products produced using exon 1/exon 2 or exon 1/exon 3 primer pairs, suggesting that Cx45 mRNAs containing exon 1 were relatively rare compared with mRNAs containing the other exons. Rapid amplification of cDNA ends (5'-RACE) was performed using antisense primers from within exon 3 and template RNA prepared from F9 cells or from adult mouse kidney. We obtained multiple RACE products from both templates, including products that contained all three exons and were spliced identically to the cDNA. However, clones were also isolated (from kidney) that began within the region previously identified as intron 1 and continued upstream with a sequence identical to the cDNA, including splicing to exon 3. These results show that mouse Cx45 has a gene structure that differs from that of previously studied connexins and allows the production of heterogeneous Cx45 mRNAs with differing 5' UTRs. These differences might contribute to regulation of Cx45 protein levels by modulating mRNA stability or translational efficiency.  相似文献   

4.
5.
6.
7.
Here we describe two rainbow trout major histocompatibility complex (MHC) class I genes characterized from lambda phage genomic clones prepared from a single fish. Clone GC71 contains all exons except a leader peptide-encoding exon. An open reading frame is maintained, and thus the gene MhcOnmy-U71 could be expressed in this individual. The class I gene found on clone GC41 lacks exons encoding the leader peptide and cytoplasmic domain. This gene, MhcOnmy-U41p, is a pseudogene due to a deletion in the alpha(2) domain-encoding exon causing premature termination. Both the Onmy-U71 and Onmy-U41p genes are distinguished by long introns between the exons encoding the alpha(1) and alpha(2) domains. Clone GC41 also contains the 3' exons of the LMP7/ PSMB8 gene encoding the gamma-interferon-induced proteosome subunit of rainbow trout.  相似文献   

8.
9.
A complementary DNA clone for bovine osteonectin was used to isolate the osteonectin gene from two libraries of bovine genomic DNA fragments. Two overlapping clones were obtained whose relationship was determined by restriction mapping and sequence analysis. The two clones contain the entire osteonectin coding region spanning approximately 11 kilobases of genomic DNA. The coding region of the gene was determined, by electron microscopy and DNA sequencing, to reside in nine exons. In addition, there is at least one 5' exon interrupted by an intron in the 5'-nontranslated sequence of the gene. Excluding this 5' exon and the 3'-terminal exon, the exons are small and approximately uniform in size, averaging 130 +/- 17 base pairs. Three of the exons at the 5' end of the gene were sequenced and appear to encode discrete protein domains. For example, the putative exon 2 contains the coding region for the leader peptide of the molecule. The amino-terminal protein sequence was determined for osteonectin extracted from human, rabbit, and chicken bone and compared with those for bovine, mouse, and pig osteonectin. These data suggest that osteonectin is highly conserved between species, interspecies changes being seen primarily at the amino terminus of the protein and specifically in the region encoded by putative exon 3 in the bovine gene.  相似文献   

10.
11.
We identify and describe the properties of an enhancer within the chicken alpha-globin gene cluster. This cluster consists of one gene (pi) expressed only in primitive erythrocytes and two (alpha A and alpha D) expressed in both primitive and definitive cell lineages. The genes are linked together in the order 5'-pi-alpha D-alpha A-3' and occupy a region about 10 kilobase pairs long. The enhancer is located at the 3' end of the cluster, about 750 base pairs 3' to the alpha A translation stop site. When assayed by transfection into either primitive or definitive primary chicken erythrocytes, this element stimulated expression from plasmids containing the alpha D- or alpha A-globulin gene promoters. Except for sites in the alpha-globin promoters, no other stimulatory activity was observed in DNA taken from other regions of the alpha-globin locus. Moderate resolution DNase I hypersensitivity studies as well as DNase I footprinting revealed three regions of protein binding, each containing a similar core DNA sequence within the enhancer element. Gel mobility shift studies demonstrated that all three regions bind the recently identified erythrocyte-specific factor, EryfI, which has binding sites in the regulatory regions of all chicken globin genes. Our data suggest that the enhancer we have identified may act in vivo only on the alpha A gene; expression of the alpha D gene is affected by another EryfI site located in the alpha D promoter. Such a mechanism would be consistent with the observed relative abundances of alpha A- and alpha D-globin in vivo. The simplicity of these regulatory elements may reflect the limited repertoire of expression of these genes during development.  相似文献   

12.
13.
14.
15.
In order to study the relationships among mammalian alpha-globin genes, we have determined the sequence of the 3' flanking region of the human alpha 1 globin gene and have made pairwise comparisons between sequenced alpha-globin genes. The flanking regions were examined in detail because sequence matches in these regions could be interpreted with the least complication from the gene duplications and conversions that have occurred frequently in mammalian alpha-like globin gene clusters. We found good matches between the flanking regions of human alpha 1 and rabbit alpha 1, human psi alpha 1 and goat I alpha, human alpha 2 and goat II alpha, and horse alpha 1 and goat II alpha. These matches were used to align the alpha-globin genes in gene clusters from different mammals. This alignment shows that genes at equivalent positions in the gene clusters of different mammals can be functional or nonfunctional, depending on whether they corrected against a functional alpha-globin gene in recent evolutionary history. The number of alpha-globin genes (including pseudogenes) appears to differ among species, although highly divergent pseudogenes may not have been detected in all species examined. Although matching sequences could be found in interspecies comparisons of the flanking regions of alpha- globin genes, these matches are not as extensive as those found in the flanking regions of mammalian beta-like globin genes. This observation suggests that the noncoding sequences in the mammalian alpha-globin gene clusters are evolving at a faster rate than those in the beta-like globin gene clusters. The proposed faster rate of evolution fits with the poor conservation of the genetic linkage map around alpha-globin gene clusters when compared to that of the beta-like globin gene clusters. Analysis of the 3' flanking regions of alpha-globin genes has revealed a conserved sequence approximately 100-150 bp 3' to the polyadenylation site; this sequence may be involved in the expression or regulation of alpha-globin genes.   相似文献   

16.
C A Gritzmacher  V S Mehl  F T Liu 《Biochemistry》1992,31(40):9533-9538
epsilon BP (for epsilon binding protein) is a M(r) 31,000 S-type animal lectin that binds to IgE and has been identified as the homologue of Mac-2, a macrophage cell-surface marker, as well as the lectins RL-29, CBP35, and L-34. The protein is composed of two domains with the amino-terminal portion containing tandem repeats of nine amino acids and the carboxyl-terminal half containing consensus sequences shared by S-type animal lectins. We determined the genomic map in both rat and mouse and isolated overlapping genomic clones that contain the 5' two-thirds of the murine gene. The remaining portion of the gene was obtained by polymerase chain reaction (PCR) amplification of genomic murine DNA followed by subcloning into plasmid vectors. The epsilon BP gene is composed of six exons separated by five introns. The entire amino-terminal repetitive sequence is contained in exon III, and the carboxyl-terminal domain is encoded by the three succeeding exons (IV, V, VI). The latter three exons correspond well in size and share sequence homology with three exons coding for 14-kDa S-type lectins. The sequence in exon I offers an explanation for the generation of two mRNAs differing only in their 5' untranslated sequences, previously reported in Mac-2 cDNA clones. Using cDNA synthesis and PCR amplification, we determined that two alternative splice sites are used in many different types of cells. This alternative splicing results in different 5' untranslated regions of the murine epsilon BP mRNA.  相似文献   

17.
18.
In order to understand the coordinate regulation between the alpha-like and beta-like globins during the developmental switches in hemoglobin synthesis, we have studied the rabbit alpha-like globin gene family. A cluster of six linked genes arranged 5'-zeta 1-alpha 1-theta 1-zeta 2-zeta 3-theta 2-3' has been isolated as a set of overlapping clones from a library of rabbit genomic DNA. Blot-hybridization analysis of genomic DNA not only confirms this linkage arrangement but also reveals the presence of additional zeta and theta genes. We propose that this gene cluster was generated by a block duplication of a set of alpha-like genes; the proposed duplication unit is zeta-zeta-alpha-theta. Further duplications of a zeta-zeta-theta set are also proposed to have occurred. As expected for a duplicated locus, the rabbit alpha-like gene cluster contains long blocks of internal homology. The Z homology block is about 7.2 kilobase pairs long and contains the zeta genes; the T homology block is about 4.7 kilobase pairs long and contains a theta gene. Surprisingly, both Z and T homology blocks are flanked by a common junction sequence (J) which contains a region very similar to the 3'-untranslated sequence of an alpha-globin gene. Analysis of the J sequences suggests a recombination mechanism by which the alpha gene could have been deleted from the second set of genes in the cluster (zeta 2-zeta 3-theta 2). The relationships among the genes in characterized alpha-like gene clusters in mammals are summarized. The rabbit gene cluster differs from those of other mammals principally in the loss of a gene orthologous to the human psi alpha 1 and in the block duplication of the zeta-zeta-alpha-theta gene set.  相似文献   

19.
20.
The glycosaminoglycan (GAG) hyaluronan (HA) is a key component of the vertebrate extracellular matrix (ECM) and is synthesised by the HA synthase (HAS) enzymes HAS1, HAS2 and HAS3 at the plasma membrane. Accumulating evidence emphasises the relevance of HA metabolism in an increasing number of processes of clinical interest including renal fibrosis and peritoneal mesothelial wound healing. In the present study, the genomic sequences and organisation of the genes encoding the human HAS isoforms were deduced, in silico, from reference cDNA and genomic sequence data. These data were confirmed in vitro by sequencing of PCR-amplified HAS exons and flanking genomic sequences, comparison with sequence data for the corresponding murine Has orthologues, rapid amplification of 5' cDNA ends analysis and luciferase reporter assays on putative proximal promoter sequences. The HAS1 gene comprised five exons, with the translation start site situated 9bp from the 3' end of exon 1. In contrast, the genomic structures for HAS2 and both HAS3 variants spanned four exons, exon 1 forming a discrete 5'-untranslated region (5'-UTR) and the translation start site lying at nucleotide 1 of exon 2. Dinucleotide microsatellite loci were identified in intron 1 of HAS1 and HAS2, and immediately upstream of the HAS3 gene and their utility as linkage markers demonstrated in genomic DNA (gDNA) studies. We thus present a comprehensive resource for mutation detection screening of all HAS exons and/or linkage analysis of each HAS gene in a variety of disorders for which they are attractive candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号