首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There has been a rapid increase in the number and demand for approved biopharmaceuticals produced from animal cell culture processes over the last few years. In part, this has been due to the efficacy of several humanized monoclonal antibodies that are required at large doses for therapeutic use. There have also been several identifiable advances in animal cell technology that has enabled efficient biomanufacture of these products. Gene vector systems allow high specific protein expression and some minimize the undesirable process of gene silencing that may occur in prolonged culture. Characterization of cellular metabolism and physiology has enabled the design of fed-batch and perfusion bioreactor processes that has allowed a significant improvement in product yield, some of which are now approaching 5 g/L. Many of these processes are now being designed in serum-free and animal-component-free media to ensure that products are not contaminated with the adventitious agents found in bovine serum. There are several areas that can be identified that could lead to further improvement in cell culture systems. This includes the down-regulation of apoptosis to enable prolonged cell survival under potentially adverse conditions. The characterization of the critical parameters of glycosylation should enable process control to reduce the heterogeneity of glycoforms so that production processes are consistent. Further improvement may also be made by the identification of glycoforms with enhanced biological activity to enhance clinical efficacy. The ability to produce the ever-increasing number of biopharmaceuticals by animal cell culture is dependent on sufficient bioreactor capacity in the industry. A recent shortfall in available worldwide culture capacity has encouraged commercial activity in contract manufacturing operations. However, some analysts indicate that this still may not be enough and that future manufacturing demand may exceed production capacity as the number of approved biotherapeutics increases.  相似文献   

2.
Monoclonal antibodies (mAbs) are one of the most important products of the biopharmaceutical industry. Their therapeutic efficacy depends on the post-translational process of glycosylation, which is influenced by manufacturing process conditions. Herein, we present a dynamic mathematical model for mAb glycosylation that considers cisternal maturation by approximating the Golgi apparatus to a plug flow reactor and by including recycling of Golgi-resident proteins (glycosylation enzymes and transport proteins [TPs]). The glycosylation reaction rate expressions were derived based on the reported kinetic mechanisms for each enzyme, and transport of nucleotide sugar donors [NSDs] from the cytosol to the Golgi lumen was modeled to serve as a link between glycosylation and cellular metabolism. Optimization-based methodologies were developed for estimating unknown enzyme and TP concentration profile parameters. The resulting model is capable of reproducing glycosylation profiles of commercial mAbs. It can further reproduce the effect gene silencing of the FucT glycosylation enzyme and cytosolic NSD depletion have on the mAb oligosaccharide profile. All novel elements of our model are based on biological evidence and generate more accurate results than previous reports. We therefore believe that the improvements contribute to a more detailed representation of the N-linked glycosylation process. The overall results show the potential of our model toward evaluating cell engineering strategies that yield desired glycosylation profiles. Additionally, when coupled to cellular metabolism, this model could be used to assess the effect of process conditions on glycosylation and aid in the design, control, and optimization of biopharmaceutical manufacturing processes.  相似文献   

3.
The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1‐checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures. Biotechnol. Bioeng. 2015;112: 141–155. © 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

4.
The characterization of host cell protein (HCP) content during the production of therapeutic recombinant proteins is an important aspect in the drug development process. Despite this, key components of the HCP profile and how this changes with processing has not been fully investigated. Here we have investigated the supernatant HCP profile at different times throughout culture of a null and model GS-CHO monoclonal antibody producing mammalian cell line grown in fed-batch mode. Using 2D-PAGE and LC-MS/MS we identify a number of intracellular proteins (e.g., protein disulfide isomerise; elongation factor 2; calreticulin) that show a significant change in abundance relative to the general increase in HCP concentration observed with progression of culture. Those HCPs that showed a significant change in abundance across the culture above the general increase were dependent on the cell line examined. Further, our data suggests that the majority of HCPs in the supernatant of the cell lines investigated here arise through lysis or breakage of cells, associated with loss in viability, and are not present due to the secretion of protein material from within the cell. SELDI-TOF and principal components analysis were also investigated to enable rapid monitoring of changes in the HCP profile. SELDI-TOF analysis showed the same trends in the HCP profile as observed by 2D-PAGE analysis and highlighted biomarkers that could be used for process monitoring. These data further our understanding of the relationship between the HCP profile and cell viability and may ultimately enable a more directed development of purification strategies and the development of cell lines based upon their HCP profile.  相似文献   

5.
The glycosylation profile of therapeutic antibodies is routinely analyzed throughout development to monitor the impact of process parameters and to ensure consistency, efficacy, and safety for clinical and commercial batches of therapeutic products. In this study, unusually high levels of the mannose‐5 (Man5) glycoform were observed during the early development of a therapeutic antibody produced from a Chinese hamster ovary (CHO) cell line, model cell line A. Follow up studies indicated that the antibody Man5 level was increased throughout the course of cell culture production as a result of increasing cell culture medium osmolality levels and extending culture duration. With model cell line A, Man5 glycosylation increased more than twofold from 12% to 28% in the fed‐batch process through a combination of high basal and feed media osmolality and increased run duration. The osmolality and culture duration effects were also observed for four other CHO antibody producing cell lines by adding NaCl in both basal and feed media and extending the culture duration of the cell culture process. Moreover, reduction of Man5 level from model cell line A was achieved by supplementing MnCl2 at appropriate concentrations. To further understand the role of glycosyltransferases in Man5 level, N‐acetylglucosaminyltransferase I GnT‐I mRNA levels at different osmolality conditions were measured. It has been hypothesized that specific enzyme activity in the glycosylation pathway could have been altered in this fed‐batch process. Biotechnol. Bioeng. 2011;108: 2348–2358. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
《MABS-AUSTIN》2013,5(5):805-811
Humira® (adalimumab) is a recombinant human IgG1 monoclonal antibody (mAb) glycoprotein consisting of 1330 amino acids that is specific for human tumor necrosis factor (TNF). The biological activity and clinical profile of mAb therapeutics, including adalimumab, is influenced by their protein structure and glycosylation patterns, which can be affected by the expression system, cell culture conditions and purification process methodology. While clinical outcome cannot yet be attributed to many of the individual structural features that constitute a mAb, it is evident that detailed structural attribute analysis is necessary if structural contributions to function are to be comprehensively defined. Adalimumab product quality data generated from over a decade of manufacturing across multiple production sites and through a series of manufacturing scale changes are presented here. These data reveal a consistent and tightly controlled profile for the product.  相似文献   

7.

Protein glycosylation is a very important quality attribute of any biopharmaceutical product as it affects the efficacy, serum half-life, and antigenicity of a molecule. The present expression hosts commercially utilized for a recombinant glycoprotein production generally cannot produce a desired and uniform glycan composition and generally exhibit non-human glycans that can lead to unwanted side effects. The authors provide a comprehensive review of various approaches which can be implemented to minimize the glycan heterogeneity for the production of the desired protein with improved glycoforms. The authors also describe that the industry standard expression systems such as mammalian, insect, and yeast are glycoengineered to produce human-like glycan composition of a recombinant product. This review summarizes the recent technologies used for the improvement of the glycan composition of the biotherapeutics, focusing largely on the selection of an appropriate expression host, glycoengineering, and upstream process optimization to control protein glycosylation and thus enhanced biological activity with fewer side effects. Here, we also suggest various approaches such as host and clone selection to achieve expected glycosylation in a recombinant protein. The cell culture, biochemical, and physical process parameters play a key role in the manufacturing of the desired glycoform of a therapeutic protein. Hence, these components are to be considered very carefully while developing such glycoproteins. Also, glycoengineering of production host to modulate the protein glycosylation is also recommended in the present review.

  相似文献   

8.
The fact that glycosylation is not a significant process in prokaryotes means that many of the proteins produced by genetically engineered bacteria are not identical to their eukaryotic counterparts. Although glycosylation affects the physical, chemical and biological nature of proteins, its pharmacological value in potential protein pharmaceuticals is not easy to predict. However, the development of mammalian cell culture methods for expressing recombinant DNA-derived glycoproteins will permit further studies in the field.  相似文献   

9.
Many cytosolic and nuclear proteins are modified by monomeric O-linked N-acetyl-d-glucosamine (O-GlcNAc). The biological functions of this form of glycosylation are unclear but evidence suggests that it heightens regulation of protein function. To assess the biological function of O-GlcNAc addition, we examined the biological effects of galactosyltransferase (GalT) microinjected into the cytoplasm of Xenopus ovarian oocytes. GalT, which catalyzes beta1-4-galactose addition to O-GlcNAc, should inhibit deglycosylation and lectin-like interactions requiring unmodified O-GlcNAc residues. Although GalT injection into diplotene-arrested oocytes has no detectable effects on cell viability, it is toxic to oocytes entering meiosis. Cell-cycle-specific toxicity is recapitulated in vitro as GalT inhibits formation of nuclei and microtubule asters from cell-free extracts of ovulated frog eggs. These observations suggest that regulation of O-GlcNAc is important for cell cycle progression and may be important in diseases in which O-GlcNAc metabolism is abnormal. The methods described here outline a viable experimental scheme for ascribing a biological function to this form of glycosylation.  相似文献   

10.
Recombinant human interferon-beta (β-IFN), used in the therapeutic treatment of multiple sclerosis (MS), can be produced on a large-scale from genetically engineered Chinese hamster ovary (CHO) cells. However, its hydrophobicity causes non-reversible, molecular aggregation in culture. The parameters affecting aggregation were determined to be concentration, culture residence time, temperature and glycosylation. Although the protein can be produced in Escherichia coli in a non-glycosylated form, the addition of glycans confers a reduced rate of aggregation as well as a 10-fold higher bioactivity. We report on the application of a low temperature perfusion culture designed to control the parameters that cause aggregation. In this three-phase culture system there is a transition to a low temperature (32°C) in a batch mode prior to implementing perfusion at 1 volume/day using an acoustic cell separator. Perfusion at the low temperature resulted in a 3.5-fold increase in specific productivity and a 7-fold increase in volumetric productivity compared to the batch culture at 37°C. The percentage aggregation of β-IFN was reduced from a maximum of 43% in batch culture to a minimum of 5% toward the end of the perfusion phase. The glycosylation profile of all samples showed predominantly sialylated biantennary fucosylated structures. The extent of sialylation, which is important for bioactivity, was enhanced significantly in the perfusion culture, compared to the batch culture.  相似文献   

11.
Despite the positive effects of mild hypothermic conditions on monoclonal antibody (mAb) productivity (qmAb) during mammalian cell culture, the impact of reduced culture temperature on mAb Fc‐glycosylation and the mechanism behind changes in the glycan composition are not fully established. The lack of knowledge about the regulation of dynamic intracellular processes under mild hypothermia restricts bioprocess optimization. To address this issue, a mathematical model that quantitatively describes Chinese hamster ovary (CHO) cell behavior and metabolism, mAb synthesis and mAb N‐linked glycosylation profile before and after the induction of mild hypothermia is constructed. Results from this study show that the model is capable of representing experimental results well in all of the aspects mentioned above, including the N‐linked glycosylation profile of mAb produced under mild hypothermia. Most importantly, comparison between model simulation results for different culture temperatures suggests the reduced rates of nucleotide sugar donor production and galactosyltransferase (GalT) expression to be critical contributing factors that determine the variation in Fc‐glycan profiles between physiological and mild hypothermic conditions in stable CHO transfectants. This is then confirmed using experimental measurements of GalT expression levels, thereby closing the loop between the experimental and the computational system. The identification of bottlenecks within CHO cell metabolism under mild hypothermic conditions will aid bioprocess optimization, for example, by tailoring feeding strategies to improve NSD production, or manipulating the expression of specific glycosyltransferases through cell line engineering. Biotechnol. Bioeng. 2017;114: 1570–1582. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc.  相似文献   

12.
在单克隆抗体药生产过程中,其糖基化修饰可能受到多种工艺参数的影响,因而容易产生异质性,并且抗体糖基化和抗体半衰期、免疫源性、ADCC、CDC等密切相关,所以单克隆抗体的糖基化修饰是重要的质量属性,需要在生物药尤其是生物类似药开发过程中重点关注,并加以调控。通过概述培养过程中的细胞株、培养工艺,以及培养基对糖型的影响,讨论如何在工艺开发过程开展研究,确保产品糖基化的一致性,从而保证单抗药物的疗效及安全性。  相似文献   

13.
We have demonstrated that temperature reduction from 37 to 33 degrees C in the culture of a CHO cell line producing recombinant human granulocyte macrophage colony stimulating factor (CHO-K1-hGM-CSF) leads to a reduced growth rate, increased cell viability, improved cellular productivity, and decreased cell metabolism. In the present study, CHO-K1-hGM-CSF cells were cultured in a biphasic mode: first, a 37 degrees C growth phase for achieving a high cell number, followed by a production phase where the culture temperature was shifted to 33 degrees C. The maximum cell density was not affected after temperature reduction while cell viability remained above 80% for a further 3.7 days in the culture kept at the lower temperature, when compared to the control culture maintained at 37 degrees C. Furthermore, the total rhGM-CSF production increased 6 times in the culture shifted to 33 degrees C. Because the quality and hence the in vivo efficacy of a recombinant protein might be affected by numerous factors, we have analyzed the N- and O-glycosylation of the protein produced under both cell culture conditions using high-pH anion-exchange chromatography and complementary mass spectrometry techniques. The product quality data obtained from the purified protein preparations indicated that decreasing temperature had no significant effect on the rhGM-CSF glycosylation profiles, including the degree of terminal sialylation. Moreover, both preparations exhibited the same specific in vitro biological activity. These results revealed that the employed strategy had a positive effect on the cell specific productivity of CHO-K1-hGM-CSF cells without affecting product quality, representing a novel procedure for the rhGM-CSF production process.  相似文献   

14.
Glucocorticoids are known to modulate various cellular functions such as cell proliferation, metabolism, glycosylation, and secretion of many proteins. We tested the effect of hydrocortisone (HC) on cell growth, viability, metabolism, protein production, and glycosylation of an Fc-protein expressing Chinese hamster ovary (CHO) cell culture. HC extended cell viability but impaired cell growth. The inhibitory effect on cell growth was dose-dependent and decreased when the glucocorticoid addition was delayed. When HC was added after 2 or 3 days of culture, an increase in glutamate consumption was observed, which was reversed by the glucocorticoid receptor antagonist mifepristone (Mif). Titer and specific productivity increased in the presence of HC. The increase in titer was only slightly reversed by Mif. On the other hand, Mif by itself induced an increase in titer to a level comparable to or higher than HC. Protein glycosylation was altered by the glucocorticoid in a dose- and time-dependent manner, with a shift to more acidic bands, which correlated with an increase in sialic acid moieties. This increase, which was not linked to a decrease in extracellular sialidase activity in HC-treated cultures, was reversed by Mif. Predictive models based on design of experiments enabled the definition of optimal conditions for process performance in terms of viability and titer and for the quality of the Fc-fusion protein in terms of glycosylation. The data obtained suggest a use of glucocorticoids for commercial production of Fc-fusion proteins expressed in CHO cells.  相似文献   

15.
The structure of N-linked glycosylation is a very important quality attribute for therapeutic monoclonal antibodies. Different carbon sources in cell culture media, such as mannose and galactose, have been reported to have different influences on the glycosylation patterns. Accurate prediction and control of the glycosylation profile are important for the process development of mammalian cell cultures. In this study, a mathematical model, that we named Glycan Residues Balance Analysis (GReBA), was developed based on the concept of Elementary Flux Mode (EFM), and used to predict the glycosylation profile for steady state cell cultures. Experiments were carried out in pseudo-perfusion cultivation of antibody producing Chinese Hamster Ovary (CHO) cells with various concentrations and combinations of glucose, mannose and galactose. Cultivation of CHO cells with mannose or the combinations of mannose and galactose resulted in decreased lactate and ammonium production, and more matured glycosylation patterns compared to the cultures with glucose. Furthermore, the growth rate and IgG productivity were similar in all the conditions. When the cells were cultured with galactose alone, lactate was fed as well to be used as complementary carbon source, leading to cell growth rate and IgG productivity comparable to feeding the other sugars. The data of the glycoprofiles were used for training the model, and then to simulate the glycosylation changes with varying the concentrations of mannose and galactose. In this study we showed that the GReBA model had a good predictive capacity of the N-linked glycosylation. The GReBA can be used as a guidance for development of glycoprotein cultivation processes.  相似文献   

16.
It is known that heterogeneous conditions exist in large-scale animal cell cultures. However, little is known about how heterogeneities affect cells, productivities, and product quality. To study the effect of non-constant dissolved oxygen tension (DOT), hybridomas were subjected to sinusoidal DOT oscillations in a one-compartment scale-down simulator. Oscillations were forced by manipulating the inlet oxygen partial pressure through a feedback control algorithm in a 220-mL bioreactor maintained at a constant agitation. Such temporal DOT oscillations simulate spatial DOT gradients that can occur in large scales. Different oscillation periods, in the range of 800 to 12,800 s (axis of 7% (air saturation) and amplitude of 7%), were tested and compared to constant DOT (10%) control cultures. Oscillating DOT decreased maximum cell concentrations, cell growth rates, and viability indexes. Cultures at oscillating DOT had an increased glycolytic metabolism that was evidenced by a decrease in yield of cells on glucose and an increase in lactate yield. DOT gradients, even several orders of magnitude higher than those expected under practical large-scale conditions, did not significantly affect the maximum concentration of an IgG(1) monoclonal antibody (MAb). The glycosylation profile of the MAb produced at a constant DOT of 10% was similar to that reported in the literature. However, MAb produced under oscillating culture conditions had a higher amount of triantennary and sialylated glycans, which can interfere with effector functions of the antibody. It was shown that transient excursions of hybridomas to limiting DOT, as occurs in deficiently mixed large-scale bioreactors, is important to culture performance as the oscillation period, and thus the time cells spent at low DOT, affected cell growth, metabolism, and the glycosylation pattern of MAb. Such results underline the importance of monitoring protein characteristics for the development of large-scale processes.  相似文献   

17.
Recombinant proteins represent almost half of the top selling therapeutics—with over a hundred billion dollars in global sales—and their efficacy and safety strongly depend on glycosylation. In this study, we showcase a simple method to simultaneously analyze N-glycan micro- and macroheterogeneity of an immunoglobulin G (IgG) by quantifying glycan occupancy and distribution. Our approach is linear over a wide range of glycan and glycoprotein concentrations down to 25 ng/mL. Additionally, we present a case study demonstrating the effect of small molecule metabolic regulators on glycan heterogeneity using this approach. In particular, sodium oxamate (SOD) decreased Chinese hamster ovary (CHO) glucose metabolism and reduced IgG glycosylation by 40% through upregulating reactive oxygen species (ROS) and reducing the UDP-GlcNAc pool, while maintaining a similar glycan profile to control cultures. Here, we suggest glycan macroheterogeneity as an attribute should be included in bioprocess screening to identify process parameters that optimize culture performance without compromising antibody quality.  相似文献   

18.
The application of a stoichiometric medium design approach was studied in fed-batch cultivation of Chinese hamster ovary (CHO) cells. A serum-free medium containing a very low protein concentration (2 mg/L insulin) was developed. A supplemental medium was formulated according to the stoichiometric equation governing cell growth using cell composition obtained from hybridoma cells. Fed-batch culture was conducted in spinner flasks using the supplemental medium for feeding. Significant improvement in cell growth, by-product reduction, and Gamma-Interferon (IFN-gamma) production was achieved as compared to a typical batch culture. Results indicate that the stoichiometric approach, originally developed for hybridoma cultures, is a fast and effective method for cell culture process design and improvement. The glycosylation of IFN-gamma was monitored off-line during the culture process. The accumulative IFN-gamma glycosylation efficiency was slightly improved as compared to that of the batch culture, due to the nutritional control through the stoichiometric feeding. Periodic glucose starvation was observed during the fed-batch culture as a result of the manual feeding. Pulse-chase radiolabeling assay shows that glucose starvation leads to a deteriorated IFN-gamma glycosylation efficiency. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 577-582, 1997.  相似文献   

19.
Many cytosolic and nuclear proteins are modified by monomeric O-linked N-acetyl- -glucosamine (O-GlcNAc). The biological functions of this form of glycosylation are unclear but evidence suggests that it heightens regulation of protein function. To assess the biological function of O-GlcNAc addition, we examined the biological effects of galactosyltransferase (GalT) microinjected into the cytoplasm of Xenopus ovarian oocytes. GalT, which catalyzes β1-4-galactose addition to O-GlcNAc, should inhibit deglycosylation and lectin-like interactions requiring unmodified O-GlcNAc residues. Although GalT injection into diplotene-arrested oocytes has no detectable effects on cell viability, it is toxic to oocytes entering meiosis. Cell-cycle-specific toxicity is recapitulated in vitro as GalT inhibits formation of nuclei and microtubule asters from cell-free extracts of ovulated frog eggs. These observations suggest that regulation of O-GlcNAc is important for cell cycle progression and may be important in diseases in which O-GlcNAc metabolism is abnormal. The methods described here outline a viable experimental scheme for ascribing a biological function to this form of glycosylation.  相似文献   

20.
Monoclonal antibodies have been used increasingly as therapeutic agents to target various diseases. Although most monoclonal antibodies have only one N-linked glycosylation site in the Fc region, N-linked glycosylation sites in the Fab region have also been observed. Because glycosylation of a monoclonal antibody can have a significant impact on its effector function, efficacy, clearance, and immunogenicity, it is essential to assess the glycosylation profile during cell line and clone selection studies and to assess the impact of cell culture conditions on the glycoform distribution during process optimization studies to ensure that the antibody is being produced with appropriate and consistent glycosylation. This article describes a liquid chromatography-mass spectrometry-based approach, in combination with papain digestion and partial reduction, to obtain site-specific glycosylation profile information for a therapeutic monoclonal antibody with two N-linked glycosylation sites in the heavy chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号