首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants generally accumulate free proline under osmotic stress conditions. Upon removal of the osmotic stress, the proline levels return to normal. In order to understand the mechanisms involved in regulating the levels of proline, we cloned and characterized a proline dehydrogenase (PDH) cDNA from Arabidopsis thaliana (AtPDH). The 1745?bp cDNA contains a major open reading frame encoding a peptide of 499 amino acids. The deduced amino acid sequence has high homology with both Saccharomyces cerevisiae and Drosophila melanogaster proline oxidases and contains a putative mitochondrial targeting sequence. When expressed in yeast, the AtPDH cDNA complemented a yeast put1 mutation and exhibited proline oxidase activity. We also determined the free proline contents and the Δ1-pyrroline-5-carboxylate synthetase (P5CS) and PDH mRNA levels under different osmotic stress and recovery conditions. The results demonstrated that the removal of free proline during the recovery from salinity or dehydration stress involves an induction of the PDH gene while the activity of P5CS declines. The reciprocal regulation of P5CS and PDH genes appears to be a key mechanism in the control of the levels of proline during and after osmotic stress. The PDH gene was also significantly induced by exogenously applied proline. The induction of PDH by proline, however, was inhibited by salt stress.  相似文献   

2.
3.
《Gene》1996,172(1):149-153
A cDNA encoding Δ1-pyrroline-5-carboxylate reductase (P5CR) was isolated from the pneumocandin(Pmo)-producing fungus, Zalerion arboricola (Za), by complementation of a P5CR-deficient mutant (pro3) of Saccharomyces cerevisiae (Sc). The cloned cDNA was placed under control of the Sc galactokinase (GAL1) promoter and restored P5CR activity to the pro3 mutant. Sequence analysis revealed that the Za P5CR-encoding cDNA encodes an approx. 35 kDa protein with substantial amino acid (aa) identity to P5CR from another filamentous fungus, Neurospora crassa (Nc). Za P5CR exhibits a moderate degree of aa identity to P5CR from plants, bacteria, human and Sc. This is the first gene to be isolated from Za.  相似文献   

4.
High salinity interferes in sugarcane growth and development, affecting not only crop yield but also reducing sucrose concentration in culms. Sugarcane plants submitted to salt stress can accumulate compatible solutes, such as proline, which may counteract the effects of salt accumulation in the vacuole and scavenge reactive oxygen species. The objective of this study was to evaluate the response to salt stress of sugarcane plants transformed with the Vigna aconitifolia P5CS gene, which encodes ?1-pyrroline-5-carboxylate synthetase, under the control of a stress-induced promoter AIPC (ABA-inducible promoter complex). For this, 4-month-old clonally multiplied sugarcane plants from two transformation events were irrigated every 2 days with 1/10 Hoagland’s solution supplemented with 100, 150 and 200 NaCl, progressively, during 28 days. Transgenic lines showed increased transgene expression in 3.75-fold when compared with the control plants after 9 days of irrigation with saline water, which can explain the higher proline concentration found in these plants. At the end of the experiment (day 28), the transgenic lines accumulated up to 25 % higher amounts of proline when compared with non-transformed control plants. Stress response in transgenic plants was also accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation in leaves, lower Na+ accumulation in leaves and maintenance of photochemical efficiency of PSII. Thus, proline contributed to the protection of the photosynthetic apparatus and the prevention of oxidative damage in transgenic sugarcane under salt stress.  相似文献   

5.
Molecular Biology Reports - The enzyme that catalyzes the last step in proline synthesis, δ1-pyrroline-5-carboxylate reductase, showed in most cases a distinct preference in vitro for NADPH as...  相似文献   

6.
The effects of ploidy levels on the activities of Δ1-pyrroline-5-carboxylate synthetase (P5CS; EC not assigned), superoxide dismutase (SOD; EC 1.15.1.1) and guaiacol peroxidase (POX; EC 1.11.1.7), as well as malondialdehyde (MDA) and proline contents were studied in two months old plants of Cenchrus species. The Cenchrus species represent three ploidy levels: diploid, tetraploid, hexaploid and two life spans: annual and perennial. Plants were subjected to water stress for 2, 4, 6 and 8 d by withholding water under glasshouse conditions. Although the levels of proline increased with the magnitude of water stress, the P5CS activity did not show a corresponding increase in all species. Peroxidase and superoxide dismutase activities showed an increase or steady state in the early phase of drought and then declined with the further increase in the magnitude of water stress, indicating differing behaviors of species towards drought tolerance. Under drought, diploid Cenchrus species had a higher POX activity, MDA accumulation and lower proline content than tetraploid species. Lower POX and higher P5CS activities and proline contents, however, were observed in hexaploid and tetraploid species. Taken together, our findings suggest that diploid species have a less efficient antioxidant system to scavenge reactive oxygen species than tetra and hexaploid Cenchrus. This may result in a corresponding variability in growth and persistence under natural grasslands. The study also paves the way for investigations on the molecular events associated with drought in Cenchrus species differing in ploidy and life span.  相似文献   

7.
8.
9.
The streptococcal enzyme that catalyzes the last step in proline biosynthesis was heterologously expressed and the recombinant protein was purified to electrophoretic homogeneity and characterized thoroughly. As for δ1-pyrroline-5-carboxylate reductases from other sources, it was able to use either NADH or NADPH as the electron donor in vitro. However, with NADH the activity was markedly inhibited by physiological levels of NADP+. Results also strengthen the possibility that an unusual ordered substrate binding occurs, in which the dinucleotide binds last.  相似文献   

10.
11.
Many plants accumulate proline (Pro) when suffered from drought; thus, the relationship between Pro accumulation and plant drought tolerance becomes an increasing concern. Pro is synthesized from either glutamine or ornithine, and the former pathway dominates under osmotic stress conditions. In this study, the dynamic accumulation of free Pro under drought stress in 10 genotypes of Tibetan hulless barley (Hordeum vulgare var. nudum) with water lose rate (WLR) of 0.3304 to 0.5839 g/(h g dry wt) was investigated. However, no correlation between Pro accumulation and drought tolerance was found. Furthermore, the barley stripe mosaic virus establisheding virus-induced gene silencing was employed to suppress the expression of the encoding gene Δ1-Pyrroline-5-Carboxylate Synthetase (P5CS), which catalyzes the ratelimiting step of Glu pathway in Pro biosynthesis. By the quantitative real-time polymerase chain reaction, the decrease of the P5CS expression was found, and a consequent Pro degradation was also detected in P5CS-silenced plants. However, neither increased WLR of detached leaves nor decreased survival rate under drought stress was found compared with control plants. These results suggested that the repressed expression of P5CS and decreased content of free Pro may not interfere with the drought tolerance of Tibetan hulless barley.  相似文献   

12.
Phospholipase D (PLD) is crucial for plant responses to stress and signal transduction, however, the regulatory mechanism of PLD in abiotic stress is not completely understood; especially, in crops. In this study, we isolated a gene, TaPLDα, from common wheat (Triticum aestivum L.). Analysis of the amino acid sequence of TaPLDα revealed a highly conserved C2 domain and two characteristic HKD motifs, which is similar to other known PLD family genes. Further characterization revealed that TaPLDα expressed differentially in various organs, such as roots, stems, leaves and spikelets of wheat. After treatment with abscisic acid (ABA), methyl jasmonate, dehydration, polyethylene glycol and NaCl, the expression of TaPLDα was up-regulated in shoots. Subsequently, we generated TaPLDα-overexpressing transgenic Arabidopsis lines under the control of the dexamethasone-inducible 35S promoter. The overexpression of TaPLDα in Arabidopsis resulted in significantly enhanced tolerance to drought, as shown by reduced chlorosis and leaf water loss, higher relative water content and lower relative electrolyte leakage than the wild type. Moreover, the TaPLDα-overexpressing plants exhibited longer roots in response to mannitol treatment. In addition, the seeds of TaPLDα-overexpressing plants showed hypersensitivity to ABA and osmotic stress. Under dehydration, the expression of several stress-related genes, RD29A, RD29B, KIN1 and RAB18, was up-regulated to a higher level in TaPLDα-overexpressing plants than in wild type. Taken together, our results indicated that TaPLDα can enhance tolerance to drought and osmotic stress in Arabidopsis and represents a potential candidate gene to enhance stress tolerance in crops.  相似文献   

13.
Ground-level ozone (O3) and drought are two key factors limiting plant growth. O3 can enter into the plant tissue through the stomata, then causing the formation of reactive oxygen species (ROS) which inspires programmed cell death. Drought usually induces the accumulation of ROS due to damage to antioxidant systems of plants. The effects of two kinds of stress on plants are similar due to the accumulation of ROS, resulting in reduced photosynthesis rate and physiological metabolism, eventually decreased plant growth and biomass. Nevertheless, O3 and drought interacts synergistically to accumulate detrimental effects or antagonistically to reduce harmful effects. Actually, it is complex interactive process between O3 and drought. On the one hand, O3 triggers stomatal sluggishness or even dysfunction, which exacerbates water transpiration of leaves, water loss from plants and further O3 phytotoxicity. On the other hand, drought induces stomatal closure, and thus protecting plants against the O3 influx and evaporation of water. However, prolonged drought could limit the uptake of CO2 and thus result in reduced plant growth. The response of plants to both O3 and drought not only depends on the occurring sequence and duration of any factor but also rely on the difference in physiological metabolism of the plant itself. The interactive effects of O3 and drought on stomatal characteristics, photosynthetic carbon mechanism, antioxidant response and growth development are reviewed in this paper and the aspects to be further studied are also suggested.  相似文献   

14.
15.
Molecular Biology Reports - Eugenia uniflora is an Atlantic Forest native species, occurring in contrasting edaphoclimatic environments. The identification of genes involved in response to abiotic...  相似文献   

16.
Thirty-six symbiotic associations involving six chickpea cultivars against six rhizobial strains were evaluated for symbiotic performance and responses to osmotic stress applied by mannitol (50 mM) in aerated hydroponic cultures. Analyses in different symbioses were focused on biomass production, nodulation, nitrogen fixation, and their modulation under osmotic stress conditions, as well as expression of nodular antioxidant enzymes. Mesorhizobium ciceri reference (835) and local (CMG6) strains, as well as the local (C11) M. mediterraneum allowed the best symbiotic efficiency for all chickpea cultivars. The osmotic stress induces severe decrease ranging 30–50% in aerial biomass and 50–70% for nitrogen fixation. Nevertheless, plants inoculated with M. ciceri (835) and M. mediterraneum (C11) preserve a relatively high growth (4 g plant−1) with nitrogen-fixing activity (25 μmols h−1 plant−1). The bacterial partner was the most important factor of variance of the analysed parameters in osmotic stress or physiological conditions where it gets to 60–85%. The strains allowing the best competent symbioses were proposed for field assays. Under osmotic stress, nodular peroxidase (POX) and ascorbate peroxidase (APX) activities were significantly enhanced. The increase of POX and APX was inversely correlated with the inhibition of aerial biomass production (= 0.05) and nitrogen-fixing capacity (= 0.01), suggesting a protective role of these enzymes in nodules. Superoxide dismutase (SOD) was also activated in stressed nodules. However, the spectacular decrease in catalase (CAT) activity discounts its involvement in osmotic stress response.  相似文献   

17.
18.
The incorporation of labeled precursors into RNAs and proteins of isolated tobacco (Nicotiana tabacum L.) leaf protoplasts decreases with increasing osmotic pressure in the incubation medium. The incorporation of precursors into RNA and proteins is linear for 15–18 h after the isolation of the protoplasts, irrespective of the osmolarity of the culture media. The uptake of precursors is also affected by the osmolarity of the medium. However, the osmotic stress-induced inhibition of incorporation of precursors into RNA and proteins is also apparent if the differences in uptake are taken into consideration in the calculation. Incorporation of 32P into TMV-RNA is also inhibited by osmotic stress. As assayed by the double labeling ratio technique, osmotic stress has less unequivocal effect on TMV protein synthesis.Abbreviations PP protoplast - RNase ribonuclease - rRNA ribosomal ribonucleic acid - SDS sodium dodecyl sulfate - SSC 0.1 M Na-acetate in 0.15 M NaCl - TCA trichloroacetic acid - TMV tobacco mosaic virus  相似文献   

19.
20.
Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade of downstream effects such as reduced resistance to biotic agents. Mortality by hydraulic failure per se may occur for isohydric seedlings or trees near their maximum height. Although anisohydric plants are relatively drought-tolerant, they are predisposed to hydraulic failure because they operate with narrower hydraulic safety margins during drought. Elevated temperatures should exacerbate carbon starvation and hydraulic failure. Biotic agents may amplify and be amplified by drought-induced plant stress. Wet multidecadal climate oscillations may increase plant susceptibility to drought-induced mortality by stimulating shifts in hydraulic architecture, effectively predisposing plants to water stress. Climate warming and increased frequency of extreme events will probably cause increased regional mortality episodes. Isohydric and anisohydric water potential regulation may partition species between survival and mortality, and, as such, incorporating this hydraulic framework may be effective for modeling plant survival and mortality under future climate conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号