首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charles E. Taylor 《Genetics》1975,80(3):621-635
A model of population structure in heterogeneous environments is described with attention focused on genetic variation at a single locus. The existence of equilibria at which there is no genetic load is examined.--The absolute fitness of any genotype is regarded as a function of location in the niche space and the population density at that location. It is assumed that each organism chooses to live in that habitat in which it is most fit ("optimal habitat selection").--Equilibria at which there is no segregation load ("loadless equilibria") may exist. Necessary and sufficient conditions for the existence of such equilibria are very weak. If there is a sufficient amount of dominance or area in which the alleles are selectively neutral, then there exist equilibria without segregational loads. In the N2p phase plane defined by population size, N, and gene frequency, p, these equilibria generally consist of a line segment which is parallel to the p axis. These equilibria are frequently stable.  相似文献   

2.
Bermingham E  Avise JC 《Genetics》1986,113(4):939-965
Restriction fragment length polymorphisms in mitochondrial DNA (mtDNA) were used to reconstruct evolutionary relationships of conspecific populations in four species of freshwater fish—Amia calva, Lepomis punctatus, L. gulosus, and L. microlophus. A suite of 14-17 endonucleases was employed to assay mtDNAs from 305 specimens collected from 14 river drainages extending from South Carolina to Louisiana. Extensive mtDNA polymorphism was observed within each assayed species. In both phenograms and Wagner parsimony networks, mtDNA clones that were closely related genetically were usually geographically contiguous. Within each species, major mtDNA phylogenetic breaks also distinguished populations from separate geographic regions, demonstrating that dispersal and gene flow have not been sufficient to override geographic influences on population subdivision.—Importantly, there were strong patterns of congruence across species in the geographic placements of the mtDNA phylogenetic breaks. Three major boundary regions were characterized by concentrations of phylogenetic discontinuities, and these zones agree well with previously described zoogeographic boundaries identified by a different kind of data base—distributional limits of species—suggesting that a common set of historical factors may account for both phenomena. Repeated episodes of eustatic sea level change along a relatively static continental morphology are the likely causes of several patterns of drainage isolation and coalescence, and these are discussed in relation to the genetic data.—Overall, results exemplify the positive role that intraspecific genetic analyses may play in historical zoogeographic reconstruction. They also point out the potential inadequacies of any interpretations of population genetic structure that fail to consider the influences of history in shaping that structure.  相似文献   

3.
Genetic variation is critical for adaptive evolution. Despite its importance, there is still limited evidence in support of some prominent theoretical models explaining the maintenance of genetic polymorphism within populations. We examined 84 populations of Xiphophorus variatus, a livebearing fish with a genetic polymorphism associated with physiological performance, to test: (1) whether niche differentiation explains broad‐scale maintenance of polymorphism, (2) whether polymorphism is maintained among populations by local adaptation and migration, or (3) whether heterogeneity in explicit environmental variables could be linked to levels of polymorphism within populations. We found no evidence of climatic niche differentiation that could generate or maintain broad geographic variation in polymorphism. Subsequently, hierarchical partitioning of genetic richness and partial mantel tests revealed that 76% of the observed genetic richness was partitioned within populations with no effect of geographic distance on polymorphism. These results strongly suggest a lack of migration‐selection balance in the maintenance of polymorphism, and model selection confirmed a significant relationship between environmental heterogeneity and genetic richness within populations. Few studies have demonstrated such effects at this scale, and additional studies in other taxa should examine the generality of gene‐by‐environment interactions across populations to better understand the dynamics and scale of balancing selection.  相似文献   

4.
Abstract.— Pathogens have the potential to maintain genetic polymorphisms by creating frequency-dependent selection on their host. This can occur when a rare host genotype is less likely to be attacked by a pathogen (frequency-dependent disease attack) and has higher fitness at low frequency (negative frequency-dependent selection). In this study, we used wheat genotypes that were susceptible to different races of the pathogen Puccinia striiformis to test whether disease created frequency-selection on its host and whether such selection could maintain polymorphisms for resistance genes in the wheat populations. Four different two-way mixtures of wheat genotypes were planted at different frequencies in both the presence and absence of disease. Disease created frequency-dependent selection on its host in some populations. Unknown factors other than disease also created frequency-dependent selection in this system because, in some instances, rare genotype advantage was observed in the absence of disease. Although the pathogen created frequency-dependent selection on its host, this selection was not sufficient to maintain genetic polymorphism in the host populations. In all cases where frequency-dependent selection occurred only in the diseased plots, one of the two genotypes was predicted to dominate in the population and the same genotype was predicted to dominate in both the presence and absence of disease. Only in cases where frequency-dependent selection was not caused by disease was there evidence that genetic polymorphisms would be maintained in the population. The frequency-dependent selection described in this study is a consequence of epidemiological effects of disease and differs from the time-lagged frequency-dependent selection resulting from coevolution between hosts and parasites. The impact of this direct frequency-dependent selection on the maintenance of genetic polymorphisms in the host population is discussed.  相似文献   

5.
The environment and the genotype in polymorphism   总被引:1,自引:0,他引:1  
It is argued that polymorphism is a useful broad term applicable to all forms of discontinuous variation affecting the same stages of development within populations. This unqualified term is particularly applicable when the fact of variation is known, but its causation is not known. The term "genetically determined polymorphism" is proposed for those polymorphisms where the genotype is paramount in morph determination, and where the environment is of little, if any importance (e.g. blood groups). Where the environment interacts with the genotype to elicit a particular morph the term "environmentally cued polymorphism' is apposite. Genetically determined polymorphisms result from discontinuously distributed, but continuously active genetic material, whilst environmentally cued polymorphisms appear to depend on universally distributed, but differentially active genetic resources.
Environmentally cued polymorphism produces morphs congruent with current ecological conditions, and in fluctuating or alternating environments it avoids the worst effects of selection for the previously existing conditions. In fluctuating environments genetically determined polymorphism is a particularly costly method of achieving adaptation.  相似文献   

6.
Theory predicts that environmental heterogeneity in space or in time can maintain genetic polymorphism. Stable polymorphisms are expected to be more readily maintained if there are genotype specific habitat preferences. Genotype specific preferences for oviposition sites in Drosophila could be a major factor promoting habitat selection, and thus the maintenance of genetic variation. This hypothesis is being tested using the cactophilic species, D. buzzatii and D. aldrichi, where available evidence indicates a potential for such habitat selection, the habitats (oviposition sites) being yeast species found in the natural environment of these flies (cactus rots). Genetic variation for oviposition preferences was tested using isofemale lines—for D. buzzatii, a total of 60 lines from seven localities widely distributed through the species range in Australia, and for D. aldrichi, 21 lines from three of these localities. Females were given a choice of five yeast species as oviposition sites. Genetic variation for oviposition preferences on these natural substrates was demonstrated. There was significant variation among isofemale lines within populations in their patterns of preferences for oviposition on the five yeast species. However, analyses of preferences for each yeast species separately showed that the genetic variation for preferences relates to only three of the five species. Heritabilities of individual female preferences for these three species were low, ranging up to 9%. Little geographic differentiation was apparent among populations, most likely due to similar selection regimes within each population. Within populations, this kind of habitat selection could act to maintain polymorphisms, both at loci determining the habitat preferences and at other loci in linkage disequilibrium with them.  相似文献   

7.
It is generally accepted that the spatial distribution of neutral genetic diversity within a species’ native range mostly depends on effective population size, demographic history, and geographic position. However, it is unclear how genetic diversity at adaptive loci correlates with geographic peripherality or with habitat suitability within the ecological niche. Using exome‐wide genomic data and distribution maps of the Alpine range, we first tested whether geographic peripherality correlates with four measures of population genetic diversity at > 17,000 SNP loci in 24 Alpine populations (480 individuals) of Swiss stone pine (Pinus cembra) from Switzerland. To distinguish between neutral and adaptive SNP sets, we used four approaches (two gene diversity estimates, FST outlier test, and environmental association analysis) that search for signatures of selection. Second, we established ecological niche models for P. cembra in the study range and investigated how habitat suitability correlates with genetic diversity at neutral and adaptive loci. All estimates of neutral genetic diversity decreased with geographic peripherality, but were uncorrelated with habitat suitability. However, heterozygosity (He) at adaptive loci based on Tajima's D declined significantly with increasingly suitable conditions. No other diversity estimates at adaptive loci were correlated with habitat suitability. Our findings suggest that populations at the edge of a species' geographic distribution harbour limited neutral genetic diversity due to demographic properties. Moreover, we argue that populations from suitable habitats went through strong selection processes, are thus well adapted to local conditions, and therefore exhibit reduced genetic diversity at adaptive loci compared to populations at niche margins.  相似文献   

8.
Cantabrian capercaillie Tetrao urogallus cantabricus is a peripheral population with distinctive phenotypic, biogeographic, and genetic characteristics. Hence, the population may also show substantial ecological differentiation associated with its habitat in purely deciduous forests. We assessed seasonal diet selection, small-scale habitat selection, and patterns of trophic niche width in Cantabrian capercaillie over two years. Diet was found to be a driver of small-scale habitat selection, a result consistent with previous studies of stand-scale habitat selection. Diet and habitat selection showed the importance of beech Fagus sylvatica, holly Ilex aquifolium, bilberry Vaccinium myrtillus, and ferns in Cantabrian capercaillie’s resource selection. Conversely, the abundant oaks Quercus petraea, birches Betula pubescens, and heaths Erica sp. were used below their availability. The reliance on bilberry appears as a unifying characteristic between central and peripheral capercaillie populations. Cantabrian capercaillie showed stronger reliance on understory resources than range-central populations. It also showed wider trophic niche and higher specialization of feeding events. Trophic niche patterns and reliance on ground resources indicated a marked ecological differentiation, which stresses the need for local data and specific conservation actions.  相似文献   

9.
In the face of global climate change, organisms may respond to temperature increases by shifting their ranges poleward or to higher altitudes. However, the direction of range shifts in riverine systems is less clear. Because rivers are dendritic networks, there is only one dispersal route from any given location to another. Thus, range shifts are only possible if branches are connected by suitable habitat, and stream‐dwelling organisms can disperse through these branches. We used Cumberlandia monodonta (Bivalvia: Unionoida: Margaritiferidae) as a model species to investigate the effects of climate change on population connectivity because a majority of contemporary populations are panmictic. We combined ecological niche models (ENMs) with population genetic simulations to investigate the effects of climate change on population connectivity and genetic diversity of C. monodonta. The ENMs were constructed using bioclimatic and landscape data to project shifts in suitable habitat under future climate scenarios. We then used forward‐time simulations to project potential changes in genetic diversity and population connectivity based on these range shifts. ENM results under current conditions indicated long stretches of highly suitable habitat in rivers where C. monodonta persists; populations in the upper Mississippi River remain connected by suitable habitat that does not impede gene flow. Future climate scenarios projected northward and headwater‐ward range contraction and drastic declines in habitat suitability for most extant populations throughout the Mississippi River Basin. Simulations indicated that climate change would greatly reduce genetic diversity and connectivity across populations. Results suggest that a single, large population of C. monodonta will become further fragmented into smaller populations, each of which will be isolated and begin to differentiate genetically. Because C. monodonta is a widely distributed species and purely aquatic, our results suggest that persistence and connectivity of stream‐dwelling organisms will be significantly altered in response to future climate change.  相似文献   

10.
A generalization of Gillespie's SAS-CFF model for natural selection acting on multiple alleles in a randomly fluctuating environment is presented that relaxes symmetry assumptions concerning the variances and covariances of allelic effects. The stationary density for a multidimensional diffusion approximation of the model is obtained and provides approximate necessary and sufficient conditions for the existence of stable polymorphisms. These conditions have exactly the same form as those derived by Kimura and Mandel for polymorphism under multiple allele selection in a constant environment, except that the time-invariant fitnesses are replaced by the approximate geometric mean fitnesses of the genotypes over time. An example illustrates that this simple relationship between random environment and constant environment conditions for polymorphism does not hold for more general selection schemes. The implications of these results for the maintenance of multiple alleles by balancing selection are discussed.  相似文献   

11.
Whether and how habitat fragmentation and population size jointly affect adaptive genetic variation and adaptive population differentiation are largely unexplored. Owing to pronounced genetic drift, small, fragmented populations are thought to exhibit reduced adaptive genetic variation relative to large populations. Yet fragmentation is known to increase variability within and among habitats as population size decreases. Such variability might instead favour the maintenance of adaptive polymorphisms and/or generate more variability in adaptive differentiation at smaller population size. We investigated these alternative hypotheses by analysing coding-gene, single-nucleotide polymorphisms associated with different biological functions in fragmented brook trout populations of variable sizes. Putative adaptive differentiation was greater between small and large populations or among small populations than among large populations. These trends were stronger for genetic population size measures than demographic ones and were present despite pronounced drift in small populations. Our results suggest that fragmentation affects natural selection and that the changes elicited in the adaptive genetic composition and differentiation of fragmented populations vary with population size. By generating more variable evolutionary responses, the alteration of selective pressures during habitat fragmentation may affect future population persistence independently of, and perhaps long before, the effects of demographic and genetic stochasticity are manifest.  相似文献   

12.
Iranian population with an Indo-European origin is one of the oldest populations in the world. Historical evidence suggests the close similarity in the origin of Iranian, European and north Indian population. However, there are few anthropological and genetic evidences on this subject. This study, which is the first report from Iran, was performed to investigate the genetic origin of Iranian population using a polymorphism in Cystathionine beta synthase (CBS) gene known as 844INS68bp in this respect, genomic DNA was extracted from the whole blood of 480 healthy normal blood donors referred to Fars Blood Transfusion Center, using a salting out method. The fragment containing 844INS68bp was amplified, the normal fragment was 174 bp and the fragment containing the insertion was 242 bp in length. Results indicated that 418 (87.08%) out of 480 individuals had a normal (N/N) genotype, 59 (12.29%) individuals were heterozygote (N/I) and 3 (0.63%) had homozygote a mutated genotype (I/I). The total frequency of 844INS68bp allele was found 6.8% which is similar to with the reported in White Caucasians. Comparison of the genotype of this study with the polymorphism in other populations revealed that Southern Iranian population has a great similarity with other Caucasians populations’ especially South Italy and North America while differed from East Asian and African populations. These results are in agreement with the result of other studied polymorphisms. Therefore, despite the great admixture of Iranian population with the neighboring non-Caucasian populations during the time, Iranian population still share a genetic background with other Caucasian populations.  相似文献   

13.
Understanding how genetic variation is maintained in a metapopulation is a longstanding problem in evolutionary biology. Historical resurveys of polymorphisms have offered efficient insights about evolutionary mechanisms, but are often conducted on single, large populations, neglecting the more comprehensive view afforded by considering all populations in a metapopulation. Here, we resurveyed a metapopulation of spotted salamanders (Ambystoma maculatum) to understand the evolutionary drivers of frequency variation in an egg mass colour polymorphism. We found that this metapopulation was demographically, phenotypically and environmentally stable over the last three decades. However, further analysis revealed evidence for two modes of evolution in this metapopulation—genetic drift and balancing selection. Although we cannot identify the balancing mechanism from these data, our findings present a clear view of contemporary evolution in colour morph frequency and demonstrate the importance of metapopulation-scale studies for capturing a broad range of evolutionary dynamics.  相似文献   

14.
Male color polymorphism may be an important precursor to sympatric speciation by sexual selection, but the processes maintaining such polymorphisms are not well understood. Here, we develop a formal model of the hypothesis that male color polymorphisms may be maintained by variation in the sensory environment resulting in microhabitat-specific selection pressures. We analyze the evolution of two male color morphs when color perception (by females and predators) is dependent on the microhabitat in which natural and sexual selection occur. We find that an environment of heterogeneous microhabitats can lead to the maintenance of color polymorphism despite asymmetries in the strengths of natural and sexual selection and in microhabitat proportions. We show that sexual selection alone is sufficient for polymorphism maintenance over a wide range of parameter space, even when female preferences are weak. Polymorphisms can also be maintained by natural selection acting alone, but the conditions for polymorphism maintenance by natural selection will usually be unrealistic for the case of microhabitat variation. Microhabitat variation and sexual selection for conspicuous males may thus provide a situation particularly favorable to the maintenance of male color polymorphisms. These results are important both because of the general insight they provide into a little appreciated mechanism for the maintenance of variation in natural populations and because such variation is an important prerequisite for sympatric speciation.  相似文献   

15.
Several properties of food webs—the networks of feeding links between species—are known to vary systematically with the species richness of the underlying community. Under the ‘latitude–niche breadth hypothesis’, which predicts that species in the tropics will tend to evolve narrower niches, one might expect that these scaling relationships could also be affected by latitude. To test this hypothesis, we analysed the scaling relationships between species richness and average generality, vulnerability and links per species across a set of 196 empirical food webs. In estuarine, marine and terrestrial food webs there was no effect of latitude on any scaling relationship, suggesting constant niche breadth in these habitats. In freshwater communities, on the other hand, there were strong effects of latitude on scaling relationships, supporting the latitude–niche breadth hypothesis. These contrasting findings indicate that it may be more important to account for habitat than latitude when exploring gradients in food-web structure.  相似文献   

16.
Innan H  Kim Y 《Genetics》2008,179(3):1713-1720
When a local colonization in a new niche occurs, the new derived population should be subject to different selective pressures from that in the original parental population; consequently it is likely that many loci will be subject to directional selection. In such a quick adaptation event through environmental changes, it is reasonable to consider that selection utilizes genetic variations accumulated in the precolonization phase. This mode of selection from standing variation would play an important role in the evolution of new species. Here, we developed a coalescent-based simulation algorithm to generate patterns of DNA polymorphism in both parental and derived populations. Our simulations demonstrate that selection causes a drastic change in the pattern of polymorphism in the derived population, but not in the parental population. Therefore, for detecting the signature of local adaptation in polymorphism data, it is important to evaluate the data from both parental and derived populations simultaneously.  相似文献   

17.
Genome-wide RNA expression data provide a detailed view of an organism's biological state; hence, a dataset measuring expression variation between genetically diverse individuals (eQTL data) may provide important insights into the genetics of complex traits. However, with data from a relatively small number of individuals, it is difficult to distinguish true causal polymorphisms from the large number of possibilities. The problem is particularly challenging in populations with significant linkage disequilibrium, where traits are often linked to large chromosomal regions containing many genes. Here, we present a novel method, Lirnet, that automatically learns a regulatory potential for each sequence polymorphism, estimating how likely it is to have a significant effect on gene expression. This regulatory potential is defined in terms of “regulatory features”—including the function of the gene and the conservation, type, and position of genetic polymorphisms—that are available for any organism. The extent to which the different features influence the regulatory potential is learned automatically, making Lirnet readily applicable to different datasets, organisms, and feature sets. We apply Lirnet both to the human HapMap eQTL dataset and to a yeast eQTL dataset and provide statistical and biological results demonstrating that Lirnet produces significantly better regulatory programs than other recent approaches. We demonstrate in the yeast data that Lirnet can correctly suggest a specific causal sequence variation within a large, linked chromosomal region. In one example, Lirnet uncovered a novel, experimentally validated connection between Puf3—a sequence-specific RNA binding protein—and P-bodies—cytoplasmic structures that regulate translation and RNA stability—as well as the particular causative polymorphism, a SNP in Mkt1, that induces the variation in the pathway.  相似文献   

18.
Recently, it was proposed that stable isotope patterns can be used to quantify the width of the ecological niche of animals. However, the potential effects of habitat use on isotopic patterns of consumers have not been fully explored and consequently isotopic patterns may yield deceptive estimates of niche width. Here, we simulated four different scenarios of a consumer foraging across an isotopically heterogeneous landscape to test the combined effects of habitat and diet selection on the widths of the isotopic niche. We then modeled the actions of a naïve researcher who randomly sampled consumers from the simulated populations, and used these results to assess the overlap and partitioning of the isotopic and the ecological niches when habitat‐derived differences among isotope signatures are not considered. Our results suggest that populations of dietary specialists exhibited broader isotopic niches than populations composed of dietary generalists, and habitat generalists exhibited narrower isotopic niche widths compared with populations of individuals that foraged in specific habitats. The conversion of isotopic niches to ecological niches without knowledge of foraging behavior and habitat‐derived isotopic differences transformed an informative δ‐space into ‘a blurry p‐space’. Therefore, knowledge of habitat‐derived differences in stable isotope values and understanding of habitat use and individual foraging behavior are critical for the correct quantification of the ecological niche.  相似文献   

19.
Environmentally induced phenotypic plasticity is thought to play an important role in the adaption of plant populations to heterogeneous habitat conditions, and yet the importance of epigenetic variation as a mechanism of adaptive plasticity in natural plant populations still merits further research. In this study, we investigated populations of Vitex negundo var. heterophylla (Chinese chastetree) from adjacent habitat types at seven sampling sites. Using several functional traits, we detected a significant differentiation between habitat types. With amplified fragment length polymorphisms (AFLP) and methylation‐sensitive AFLP (MSAP), we found relatively high levels of genetic and epigenetic diversity but very low genetic and epigenetic differences between habitats within sites. Bayesian clustering showed a remarkable habitat‐related differentiation and more genetic loci associated with the habitat type than epigenetic, suggesting that the adaptation to the habitat is genetically based. However, we did not find any significant correlation between genetic or epigenetic variation and habitat using simple and partial Mantel tests. Moreover, we found no correlation between genetic and ecologically relevant phenotypic variation and a significant correlation between epigenetic and phenotypic variation. Although we did not find any direct relationship between epigenetic variation and habitat environment, our findings suggest that epigenetic variation may complement genetic variation as a source of functional phenotypic diversity associated with adaptation to the heterogeneous habitat in natural plant populations.  相似文献   

20.
How and under what situations populations adapt to local conditions remains a key question in evolutionary biology. This study tests if the particular morphology of a population of Tree lizards, Urosaurus ornatus, located in a canyon on the margin of the species range represents an adaptation to canyon habitat. Morphology was compared across 40 populations showing that relative hind limb length, tail length, and mass were all outliers for this population. The function of the relatively longer hind limbs, tail, and lower mass was proposed to be for better sprinting ability on the sheer canyon walls that provide the only available habitat structure for this population. Partial least squares regression found significant effects of tail length on top speed on a broad, steep surface. Partial least squares logistic regression identified significant effects of tail length on survival as well in males but not females of this population. Another canyon population of Tree lizards with access to alternative substrates (trees) showed no evidence of selection on the same morphological features. Ancestral state reconstruction using a phylogeny inferred for 21 populations found that the unique morphology of the focal population was evolutionarily derived compared to closely related populations and so likely arose under the present environmental conditions. Population genetic structure also supported the process of adaptive divergence as there was no evidence for migration and/or a recent genetic bottleneck in the focal population. Lizards in this population appear to have responded to selection allowing them to become specialists for running on canyon walls while other canyon populations with access to a greater variety of habitat structure have not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号