首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclooxygenase-2 (COX-2)-mediated prostaglandin synthesis has recently been implicated in human cholangiocarcinogenesis. This study was designed to examine the mechanisms by which COX-2-derived prostaglandin E2 (PGE2) regulates cholangiocarcinoma cell growth and invasion. Immunohistochemical analysis revealed elevated expression of COX-2 and the epidermal growth factor (EGF) receptor (EGFR) in human cholangiocarcinoma tissues. Overexpression of COX-2 in a human cholangiocarcinoma cell line (CCLP1) increased tumor cell growth and invasion in vitro and in severe combined immunodeficient mice. Overexpression of COX-2 or treatment with PGE2 or the EP1 receptor agonist ONO-DI-004 induced phosphorylation of EGFR and enhanced tumor cell proliferation and invasion, which were inhibited by the EP1 receptor small interfering RNA or antagonist ONO-8711. Treatment of CCLP1 cells with PGE2 or ONO-DI-004 enhanced binding of EGFR to the EP1 receptor and c-Src. Furthermore, PGE2 or ONO-DI-004 treatment also increased Akt phosphorylation, which was blocked by the EGFR tyrosine kinase inhibitors AG 1478 and PD 153035. These findings reveal that the EP1 receptor transactivated EGFR, thus activating Akt. On the other hand, activation of EGFR by its cognate ligand (EGF) increased COX-2 expression and PGE2 production, whereas blocking PGE2 synthesis or the EP1 receptor inhibited EGF-induced EGFR phosphorylation. This study reveals a novel cross-talk between the EP1 receptor and EGFR signaling that synergistically promotes cancer cell growth and invasion.  相似文献   

2.
Recent evidence indicates that cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) are involved in hepatocarcinogenesis. This study was designed to evaluate the possible interaction between the COX-2 and EGFR signaling pathways in human hepatocellular carcinoma (HCC) cells. Immunohistochemical analysis using serial sections of human HCC tissues revealed positive correlation between COX-2 and EGFR in HCC cells (P < 0.01). Overexpression of COX-2 in cultured HCC cells (Hep3B) or treatment with PGE(2) or the selective EP(1) receptor agonist, ONO-DI-004, increased EGFR phosphorylation and tumor cell invasion. The PGE(2)-induced EGFR phosphorylation and cell invasiveness were blocked by the EP(1) receptor siRNA or antagonist ONO-8711 and by two EGFR tyrosine kinase inhibitors, AG1478 and PD153035. The EP(1)-induced EGFR transactivation and cell invasion involves c-Src, in light of the presence of native binding complex of EP(1)/Src/EGFR and the inhibition of PGE(2)-induced EGFR phosphorylation and cell invasion by the Src siRNA and the Src inhibitor, PP2. Further, overexpression of COX-2 or treatment with PGE(2) also induced phosphorylation of c-Met, another receptor tyrosine kinase critical for HCC cell invasion. Moreover, activation of EGFR by EGF increased COX-2 promoter activity and protein expression in Hep3B and Huh-7 cells, whereas blocking PGE(2) synthesis or EP(1) attenuated EGFR phosphorylation induced by EGF, suggesting that the COX-2/PGE(2)/EP(1) pathway also modulate the activation of EGFR by its cognate ligand. These findings disclose a cross-talk between the COX-2/PGE(2)/EP(1) and EGFR/c-Met signaling pathways that coordinately regulate human HCC cell invasion.  相似文献   

3.
4.
Prostaglandins (PGs), bioactive lipid molecules produced by cyclooxygenase enzymes (COX-1 and COX-2), have diverse biological activities, including growth-promoting actions on gastrointestinal mucosa. They are also implicated in the growth of colonic polyps and cancers. However, the precise mechanisms of these trophic actions of PGs remain unclear. As activation of the epidermal growth factor receptor (EGFR) triggers mitogenic signaling in gastrointestinal mucosa, and its expression is also upregulated in colonic cancers and most neoplasms, we investigated whether PGs transactivate EGFR. Here we provide evidence that prostaglandin E2 (PGE2) rapidly phosphorylates EGFR and triggers the extracellular signal-regulated kinase 2 (ERK2)--mitogenic signaling pathway in normal gastric epithelial (RGM1) and colon cancer (Caco-2, LoVo and HT-29) cell lines. Inactivation of EGFR kinase with selective inhibitors significantly reduces PGE2-induced ERK2 activation, c-fos mRNA expression and cell proliferation. Inhibition of matrix metalloproteinases (MMPs), transforming growth factor-alpha (TGF-alpha) or c-Src blocked PGE2-mediated EGFR transactivation and downstream signaling indicating that PGE2-induced EGFR transactivation involves signaling transduced via TGF-alpha, an EGFR ligand, likely released by c-Src-activated MMP(s). Our findings that PGE2 transactivates EGFR reveal a previously unknown mechanism by which PGE2 mediates trophic actions resulting in gastric and intestinal hypertrophy as well as growth of colonic polyps and cancers.  相似文献   

5.
Proteinase-activated receptor (PAR)(2), a G protein-coupled receptor activated by serine proteinases, has been implicated in both intestinal inflammation and epithelial proliferation. Cyclooxygenase (COX)-2 is overexpressed in the gut during inflammation as well as in colon cancer. We hypothesized that PAR(2) drives COX-2 expression in intestinal epithelial cells. Treatment of Caco-2 colon cancer cells with the PAR(2)-activating peptide 2-furoyl-LIGRLO-NH(2) (2fLI), but not by its reverse-sequence PAR(2)-inactive peptide, for 3 h led to an increase in intracellular COX-2 protein expression accompanied by a COX-2-dependent increase in prostaglandin E(2) production. 2fLI treatment for 30 min significantly increased metalloproteinase activity in the culture supernatant. Increased epidermal growth factor receptor (EGFR) phosphorylation was observed in cell lysates following 40 min of treatment with 2fLI. The broad-spectrum metalloproteinase inhibitor marimastat inhibited both COX-2 expression and EGFR phosphorylation. The EGFR tyrosine kinase inhibitor PD153035 also abolished 2fLI-induced COX-2 expression. Although PAR(2) activation increased ERK MAPK phosphorylation, neither ERK pathway inhibitors nor a p38 MAPK inhibitor affected 2fLI-induced COX-2 expression. However, inhibition of either Src tyrosine kinase signaling by PP2, Rho kinase signaling by Y27632, or phosphatidylinositol 3 (PI3) kinase signaling by LY294002 prevented 2fLI-induced COX-2 expression. Trypsin increased COX-2 expression through PAR(2) in Caco-2 cells and in an EGFR-dependent manner in the noncancerous intestinal epithelial cell-6 cell line. In conclusion, PAR(2) activation drives COX-2 expression in Caco-2 cells via metalloproteinase-dependent EGFR transactivation and activation of Src, Rho, and PI3 kinase signaling. Our findings provide a mechanism whereby PAR(2) can participate in the progression from chronic inflammation to cancer in the intestine.  相似文献   

6.
The myofibroblast has recently been identified as an important mediator of tumor necrosis factor-α (TNF-α)-associated colitis and cancer, but the mechanism(s) involved remains incompletely understood. Recent evidence suggests that TNF-α is a central regulator of multiple inflammatory signaling cascades. One important target of TNF-α may be the signaling pathway downstream of the epidermal growth factor receptor (EGFR), which has been associated with many human cancers. Here, we show that long-term exposure of 18Co cells, a model of human colonic myofibroblasts, with TNF-α led to a striking increase in cell surface EGFR expression, an effect that was completely inhibited by cycloheximide. Subsequent EGFR binding by EGF and heparin binding (HB)-EGF was associated with enhanced EGFR tyrosine kinase activity, prolonged ERK activation, and a significant increase in cyclooxygenase-2 (COX-2) expression compared with 18Co cells treated with EGF and HB-EGF alone. TNF-α also increased EGFR expression and signaling in primary myofibroblasts isolated from human colon tissue. TNF-α-induced upregulation of EGFR may be a plausible mechanism to explain the exaggerated cellular responsiveness that characterizes inflammatory bowel disease and that may contribute to a microenvironment that predisposes to colitis-associated cancer through enhanced COX-2 expression.  相似文献   

7.
TNF and epidermal growth factor (EGF) are well-known stimuli of cyclooxygenase (COX)-2 expression, and TNF stimulates transactivation of EGF receptor (EGFR) signaling to promote survival in colon epithelial cells. We hypothesized that COX-2 induction and cell survival signaling downstream of TNF are mediated by EGFR transactivation. TNF treatment was more cytotoxic to COX-2(-/-) mouse colon epithelial (MCE) cells than wild-type (WT) young adult mouse colon (YAMC) epithelial cells or COX-1(-/-) cells. TNF also induced COX-2 protein and mRNA expression in YAMC cells, but blockade of EGFR kinase activity or expression inhibited COX-2 upregulation. TNF-induced COX-2 expression was reduced and absent in EGFR(-/-) and TNF receptor-1 (TNFR1) knockout MCE cells, respectively, but was restored upon expression of the WT receptors. Inhibition of mediators of EGFR transactivation, Src family kinases and p38 MAPK, blocked TNF-induced COX-2 protein and mRNA expression. Finally, TNF injection increased COX-2 expression in colon epithelium of WT, but not kinase-defective EGFR(wa2) and EGFR(wa5), mice. These data indicate that TNFR1-dependent transactivation of EGFR through a p38- and/or an Src-dependent mechanism stimulates COX-2 expression to promote cell survival. This highlights an EGFR-dependent cell signaling pathway and response that may be significant in colitis-associated carcinoma.  相似文献   

8.
9.
10.
PURPOSE: The epidermal growth factor receptor (EGFR) autocrine pathway plays an important role in cancer cell growth. Vascular endothelial growth factor A (VEGF-A) is a key regulator of tumor-induced endothelial cell proliferation and vascular permeability. ZD6474 is an orally available, small molecule inhibitor of VEGF receptor-2 (VEGFR-2), EGFR and RET tyrosine kinase activity. We investigated the activity of ZD6474 in combination with cetuximab, an anti-EGFR blocking monoclonal antibody, to determine the anti-tumor activity of EGFR blockade through the combined use of two agents targeting the receptor at different molecular sites in cancer cells and of VEGFR-2 blockade in endothelial cells. EXPERIMENTAL DESIGN: The anti-tumor activity in vitro and in vivo of ZD6474 and/or cetuximab was tested in human cancer cell lines with a functional EGFR autocrine pathway. RESULTS: The combination of ZD6474 and cetuximab determined synergistic growth inhibition in all cancer cell lines tested as assessed by the Chou and Talalay method. In nude mice bearing established human colon carcinoma (GEO) or lung adenocarcinoma (A549) xenografts and treated with ZD6474 and/or cetuximab for 4 weeks, a reversible tumor growth inhibition was caused by each drug. In contrast, a more significant tumor growth delay resulted from the combination of the two agents with an approximately 100-110 days increase in mice median overall survival as compared to single agent treatment. CONCLUSIONS: This study provides a rationale for evaluating in a clinical setting the double blockade of EGFR in combination with inhibition of VEGFR-2 signaling as cancer therapy.  相似文献   

11.
12.
13.
Cyclooxygenase (COX)-2 expression and prostaglandin E(2) (PGE(2)) secretion are increased in prostatic intraepithelial neoplasia (PIN) and prostate cancer. PGE(2) biosynthesis by cyclooxygenase (COX)-2 plays a pivotal role in inflammation and carcinogenesis. One of the critical proinflammatory cytokines in the prostate is interleukin-6 (IL-6). We hypothesized that increased expression of COX-2, with resultant increased levels of PGE(2) in human PIN cells, activates the IL-6 signaling pathway. We demonstrate an autocrine upregulation of PGE(2) mediated by IL-6 in a human PIN cell line. We further demonstrate that PGE(2) stimulates soluble IL-6 receptor (sIL-6R) release, gp130 dimerization, Stat-3 protein phosphorylation, and DNA binding activity. These events, induced by PGE(2), lead to increased PIN cell growth. Treatment of PIN cells with a selective COX-2 inhibitor decreases cell growth. Finally, PGE(2)-stimulated PIN cell growth was abrogated by the addition of IL-6 neutralizing antibodies. These data provide mechanistic evidence that increased expression of COX-2/PGE(2) contributes to prostate cancer development and progression via activation of the IL-6 signaling pathway.  相似文献   

14.
15.
Many G protein-coupled receptors (GPCRs) activate MAP kinases by stimulating tyrosine kinase signaling cascades. In some systems, GPCRs stimulate tyrosine phosphorylation by inducing the "transactivation" of a receptor tyrosine kinase (RTK). The mechanisms underlying GPCR-induced RTK transactivation have not been clearly defined. Here we report that GPCR activation mimics growth factor-mediated stimulation of the epidermal growth factor receptor (EGFR) with respect to many facets of RTK function. beta(2)-Adrenergic receptor (beta(2)AR) stimulation of COS-7 cells induces EGFR dimerization, tyrosine autophosphorylation, and EGFR internalization. Coincident with EGFR transactivation, isoproterenol exposure induces the formation of a multireceptor complex containing both the beta(2)AR and the "transactivated" EGFR. beta(2)AR-mediated EGFR phosphorylation and subsequent beta(2)AR stimulation of extracellular signal-regulated kinase (ERK) 1/2 are sensitive to selective inhibitors of both EGFR and Src kinases, indicating that both kinases are required for EGFR transactivation. beta(2)AR-dependent signaling to ERK1/2, like direct EGF stimulation of ERK1/2 activity, is sensitive to inhibitors of clathrin-mediated endocytosis, suggesting that signaling downstream of both the EGF-activated and the GPCR-transactivated EGFRs requires a productive engagement of the complex with the cellular endocytic machinery. Thus, RTK transactivation is revealed to be a process involving both association of receptors of distinct classes and the interaction of the transactivated RTK with the cells endocytic machinery.  相似文献   

16.
Steroid hormones are expressed at low levels in mesenchymal cells and are highly expressed in soft tissue sarcoma. In human soft tissue fibrosarcoma cell line (HT-1080), the epidermal growth factor (EGF) stimulates the express of matrix metal (MMPs) expression through a Src-dependent mechanism. In human fibrosarcomas, increased expression of MMPs correlates with the metastatic progression. Our recent data in human breast cancer cell line MCF-7, demonstrates that EGF stimulates estradiol receptor (ER) phosphorylation on tyrosine at position 537 thereby promoting the association of a complex among EGF receptor (EGFR), androgen receptor (AR), ER, and Src that activates EGF-dependent signaling pathway. In the present study, we demonstrate that, in HT-1080 cells, the Src kinase activity is involved in EGFR phosphorylation and this activity is regulated by an interplay between Src, steroid receptors, and EGFR. In these cells, estradiol (E(2) )/ER and synthetic androgen (R1881)/AR trans-activate EGFR leading to the downstream signaling and to ERK activation. Indeed, the association between ER/AR and EGFR enhances metastatic progression of fibrosarcoma tumors. A population pilot study performed on 16 patients with soft tissue neoplasias highlights that MMPs expression correlates with progression of anaplastic sarcoma as well as overexpression of EGFR. These findings suggest that there is a crosstalk among AR, ER, and EGFR that lead to src activation also in fibrosarcoma cells.  相似文献   

17.
In the renal medulla, cyclooxygenase (COX)-2 is induced by osmotic stress as present in this kidney region during antidiuresis. Increasing evidence suggests that EGF receptor (EGFR) signaling is involved in this process. The aim of the present study was to examine the mechanisms responsible for COX-2 expression and PGE(2) production during hypertonic conditions and to identify potential autocrine/paracrine EGFR ligands. Immunohistochemisty and Western blot analysis revealed abundant expression of the pro-EGFR ligand pro-transforming growth factor (TGF)-alpha in renal medullary cells in vivo and in cultured Madin-Darby canine kidney cells. In Madin-Darby canine kidney cells, hypertonicity rapidly increased TNF-alpha converting enzyme (TACE)-dependent ectodomain shedding of pro-TGF-alpha; phosphorylation of EGFR, p38, and ERK1/2; expression of COX-2; and production of PGE(2). Conversely, TACE inhibition prevented TGF-alpha release; EGFR, p38, and ERK1/2 activation; and COX-2 expression. Furthermore, cell survival was reduced substantially, a response that could be reversed by the addition of PGE(2). Simultaneous addition of recombinant TGF-alpha during TACE inhibition restored EGFR and MAPK phosphorylation, COX-2 expression, PGE(2) production, and cell survival during osmotic stress. These results indicate that hypertonicity induces TACE-mediated ectodomain shedding of pro-TGF-alpha, which subsequently activates COX-2 expression in an autocrine/paracrine fashion, via EGFR and MAPKs. We conclude that tonicity-induced TGF-alpha release is required for COX-2 expression, PGE(2) synthesis, and survival of renal medullary cells during osmotic stress.  相似文献   

18.
19.
Transforming growth factor-ß1 (TGF-β1) is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF-β1 (5 ng/mL) induced downregulation of cyclooxygenase-2 (COX-2), leading to reduced synthesis of prostaglandin E2 (PGE2), in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF-β1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF-β1 is also a potent inducer of epithelial mesenchymal transition (EMT), a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF-β1-induced expression of fibronectin and collagen I (extracellular matrix components). Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF-β1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF-β1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号