首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conidia of Penicillium chrysogenum were immobilized in K-carrageenan beads and then incubated in a growth-supporting medium to yield a penicillin producing immobilized cell mass. These in situ grown immobilized cells were used for the semicontinuous (replacement cultures)and continuous (fluidized bioreactor culture) production of penicillin-G. When periodically replaced into a minimal production medium, immobilized cells exhibited a half-life for penicillin production which was ninefold greater than that exhibited by free cells. The half-life of penicillin production and the yield of penicillin from glucose in such a replacement culture were greatly affected by the frequency of replacement and by the production medium's pH and concentration of glucose, phosphate, and trace metal nutrients. A penicillin-producing continuous flow bioreactor (150 mL), employing immobilized cells, was operated for up to 16 days. The best specific penicillin productivity (1.2 mg/g cells/h)yield from glucose (7.0 mg/g glucose) and half-life of production (15 days) were obtained when the feed medium contained 10 g/L of glucose, the pH was maintained at 7.0, the relative dissolved oxygen concentration was ca. 40%; and the residence time was 20 h.  相似文献   

2.
Summary Clostridium butyricum was immobilized in a porous carrier (acetylcellulose filter) with agar. Addition of peptone to the reaction mixture increased the hydrogen productivity from glucose. The number of cells in the agaracetylcellulose increased during incubation in the medium containing glucose and peptone, and the immobilized growing cells converted 45% of the glucose to hydrogen. Riboflavin enhanced the hydrogen productivity and the lactate produced by the native cells decreased remarkably. Therefore, the immobilized whole cells incubated with riboflavin were employed for repeated hydrogen production in the medium containing glucose and peptone. The hydrogen productivity of the immobilized cells increased markedly after repeated use, and the immobilized cells produced hydrogen in stoichiometric amounts from glucose.  相似文献   

3.
Pretreated cotton towels were used as carriers to immobilize Clostridium acetobutylicum CGMCC 5234 cells for butanol or ABE production from glucose and xylose. Results showed that cell immobilization was a promising method to increase butanol concentration, yield and productivity regardless of the sugar sources compared with cell suspension. In this study, a high butanol concentration of 10.02 g/L with a yield of 0.20 g/g was obtained from 60 g/L xylose with 9.9 g/L residual xylose using immobilized cells compared with 8.48 g/L butanol and a yield of 0.141 g/g with 20.2 g/L residual xylose from 60 g/L xylose using suspended cells. In mixed-sugar fermentation (30 g/L glucose plus 30 g/L xylose), the immobilized cultures produced 11.1 g/L butanol with a yield of 0.190 g/g, which were 28.3% higher than with suspended cells (8.65 g/L) during which 30 g/L glucose was utilized completely using both immobilized and suspended cells while 3.46 and 13.1 g/L xylose maintained untilized for immobilized and suspended cells, respectively. Based on the results, we speculated that immobilized cells showed enhanced tolerance to butanol toxicity and the cultures preferred glucose to xylose during ABE fermentation. Moreover, the cultures showed obvious difference when grown between high initial concentrations of glucose and those of xylose. Repeated-batch fermentations from glucose with immobilized cells showed better long-term stability than from xylose. At last, the morphologies of free and immobilized cells adsorbed on pretreated cotton towels during the growth cycle were examined by SEM.  相似文献   

4.
通过海藻酸钠/纤维素硫酸钠-聚二甲基二烯丙基氯化铵(SA/NaCS-PDMDAAC)微胶囊固定化酵母细胞将胞苷一磷酸(CMP)转化为胞苷三磷酸(CTP),考察了各种因素条件对CTP转化率的影响,以提高CTP的转化率.通过考察分批补料添加葡萄糖,固定化酵母量,CMP浓度等以达到提高CTP转化率的要求.结果在250 mL锥...  相似文献   

5.
Synthesis and lysis of formate by immobilized cells of Escherichia coli   总被引:2,自引:0,他引:2  
Formate hydrogenlyase (FHL) activity was induced in a strain of Escherichia coli S13 during anaerobic growth in yeast extract-tryptone medium containing 100 mM formate. The cells obtained at the optimum growth phase were immobilized in 2.5% (w/v) agar gel when 50-60% of the whole cell FHL activity was retained. The immobilized FHL system had good storage stability and recycling efficiency. In the lysis of formate, an increase of formate concentration to 1.18M increased QH(2) (initial) value of the immobilized cell, and subsequently cells, hydrogen evolution, in general, ceased after 6 to 8 of incubation, resulting in incomplete lysis of formate. Presence of small amount of glucose (28 mM) was more or less quantitatively lysed with concomitant disappearence of glucose from the medium. Synthesis of formate from hydrogen and bicarbonate solution by the immobilized cells was also characterized. Presence of glucose (10 mM) in 50 mM bicarbonate solution stimulated formate synthesis by immobilized cells. The pH optimum range, K(m), and specific activity of the immobilized cells for the lysis of formate were 6.8-7.2 0.4M, and 66 mL/g cell-h, respectively. The cells could fix hydrogen to the extent of 24.4% (w/w) of its own wet cell mass in a 72-h reaction cycle. Potentiality of the immobilized FHL system for biotechnological exploitation was discussed.  相似文献   

6.
利用固定化米根霉在三相流化床中发酵生成L-乳酸   总被引:6,自引:0,他引:6  
用聚氨酯泡沫吸附固定米根霉菌丝,在三相流化床中对葡萄糖、木糖以及木糖渣的纤维素酶解液等不同碳源进行L-乳酸发酵研究,并对游离菌丝和固定化菌丝发酵L-乳酸进行了比较。结果表明,聚氨酯泡沫是米根霉的良好载体,具有经济、高效等特点。实验条件下,不同碳源的乳酸转化率分别为:葡萄糖,82.5%;木糖,53.8%;木糖渣酶水解液,71.9%。三相流化床中固定化米根霉产酸速率(对葡萄糖)为19.1g.h^-1.  相似文献   

7.
Ethanol fermentation by immobilized Saccharomyces cerevisiae cells in magnetic particles was successfully carried out in a magnetically stabilized fluidized bed reactor (MSFBR). These immobilized magnetic particles solidified in a 2 % CaCl(2) solution were stable and had high ethanol fermentation activity. The performance of ethanol fermentation of glucose in the MSFBR was affected by initial particle loading rate, feed sugar concentration and dilution rate. The ethanol theoretical yield, productivity and concentration reached 95.3%, 26.7 g/L h and 66 g/L, respectively, at a particle loading rate of 41% and a feed dilution rate of 0.4 h(-1) with a glucose concentration of 150 g/L when the magnetic field intensity was kept in the range of 85-120 Oe. In order to use this developed MSFBR system for ethanol production from cheap raw materials, cane molasses was used as the main fermentation substrate for continuous ethanol fermentation with the immobilized S. cerevisiae cells in the reactor system. Molasses gave comparative ethanol productivity in comparison with glucose in the MSFBR, and the higher ethanol production was observed in the MSFBR than in a fluidized bed reactor (FBR) without a magnetic field.  相似文献   

8.
Pyocyanin is the blue phenazine pigment produced by Pseudomonas aeruginosa. Pyocyanin production using immobilized cells was investigated. The maximum production of pyocyanin was obtained using cells immobilized in kappa-carrageenan. Moreover, 0.01% PO4(3-), 0.2% Mg(2+), 0.001% Fe(2+), 1% glycerine, 0.8% leucine and 0.8% dl-alanine were also essential for pyocyanin production. Pyocyanin was purified by chloroform extraction and silica gel column chromatography. An amperometric biosensor system using a screen-printed electrode and pyocyanin as mediator were also developed for a more accurate determination of glucose concentration. Pyocyanin, which exists in the oxidated form, was reduced by the reaction between glucose oxidase and glucose. The reduced form was then converted back to the oxidized form by an oxidative reaction on the electrode. There was a linear relation ship between sensor output currents and glucose concentrations ranging from 1 to 20mM under the following conditions: -200 mV of the applied potential, pH 5.0, and 10 U of the immobilized enzyme. The coefficient of variation was below 3% (n = 5) for the glucose sensor.  相似文献   

9.
The feasibility of immobilizing invertase (β-d-fructofuranosidase; EC 3.2.1.26) from Saccharomyces cerevisiae cells by various methods was examined. The yeast cells were adapted for maximal invertase activity by growth in a medium containing 0.2% glucose and 1% lactate. There was no permeability barrier for the enzyme in the whole cells. Entrapment in acrylamide polymerized by gamma-rays (200 kR) was observed to be most effective, with retention of 85% of the activity. The evaluation of the properties of the immobilized invertase indicated that the kinetic values were not appreciably altered despite a broad pH optimum. The enzyme was more stable to both heat and gamma-radiation. The immobilized cells could be used repeatedly in a packed bed reactor system for inversion of sucrose without observable loss in activity for over one month.  相似文献   

10.
Saccharomyces cerevisiae cells, Kluyveromyces marxianus cells, inulase, glucose oxidase, chloroplasts, and mitochondria were immobilized in calcium alginate gels. Ethanol production from glucose solutions by an immobilized preparation of S. cerevisiae was deomonstrated over a total of twenty-three days, and the half-life of such a preparation was shown to be about ten days. Immobilized K. marxianus, inulase, and glucose oxidase preparations were used to demonstrate the porosity and retraining properties of calcium alginate gels. Calcium alginate-immobilized chloroplasts were shown to perform the Hill reaction. Some experiments with immobilized mitochondria are reported.  相似文献   

11.
Saccharomyces cerevisiae cells, Kluyveromyces marxianus cells, inulase, glucose oxidase, chloroplasts, and mitochondria were immobilized in calcium alginate gels. Ethanol production from glucose solutions by an immobilized preparation of S. cerevisiae was demonstrated over a total of twenty-three days, and the half-life of such a preparation was shown to be about ten days. Immobilized K. marxianus, inulase, and glucose oxidase preparations were used to demonstrate the porosity and retraining properties of calcium alginate gels. Calcium alginate-immobilized chloroplasts were shown to perform the Hill reaction. Some experiments with immobilized mitochondria are reported.  相似文献   

12.
The kinetic properties of Saccharomyces cerevisiae immobilized on crosslinked gelatin were found to be substantially different from those of the suspended yeast. Batch fermentation experiments conducted in a gradientless reaction system allowed comparison of immobilized cell and suspended cell performance. The specific rate of ethanol production by the immobilized cell was 40-50% greater than for the suspended yeast. The immobilized cells consumed glucose twice as fast as the suspended cells, but their specific growth rate was reduced by 45%. Yields of biomass from the immobilized cell population were lower at one-third the value for the suspended cells. Cellular composition was also affected by immobilization. Measurements of intracellular polysaccharide levels showed that the immobilized yeast stored larger quantities of reserve carbohydrates and contained more structural polysaccharide than did suspended cells. Flow cytometry was used to obtain. DNA, RNA, and protein frequency functions for immobilized and suspended cell populations. These data showed that the immobilized cells have higher ploidy than cells in suspension. The observed changes in immobilized cell metabolism and composition may have arisen from disturbance to the yeast cell cycle by the cell attachment, causing alterations in the normal pattern of yeast bud development, DNA replication, and synthesis of cell wall components.  相似文献   

13.
As part of a research program aimed at producing biodiesel fuel from plant oils enzymatically cells of Rhizopus oryzae (R. oryzae) IFO4697 (with a 1,3-positional specificity lipase) immobilized within biomass support particles (BSPs) were investigated for the methanolysis of soybean oil. The R. oryzae cells easily became immobilized within the BSPs during batch operation. To enhance the methanolysis activity of the immobilized cells under the culture conditions used, various substrate-related compounds were added to the culture medium. Among the compounds tested, olive oil or oleic acid was significantly effective. In contrast, no glucose was necessary. Immobilized cells were treated with several organic solvents, but none gave higher activity than untreated cells. When methanolysis was carried out with stepwise additions of methanol using BSP-immobilized cells, in the presence of 15% water the methyl esters (MEs) content in the reaction mixture reached 90% - the same level as that using the extracellular lipase. The process presented here, using a whole cell biocatalyst, is considered to be promising for biodiesel fuel production in industrial applications.  相似文献   

14.
Cells of S. cerevisiae strain "14-12" of different ages were immobilized in sodium alginate and used for conversion of glucose to ethanol. Immobilized cells of 48 hr old were the most potential. Employment of high counts of alginate-entrapped cells shortened the period required for production of the maximal alcohol yield. However, the percentage surviving cells decreased with increasing initial cell counts. Maximal accumulation of ethanol (4.18 g/100 ml) was obtained after 4 days of static fermentation with 1.8 X 10(8) immobilized yeast cells. The residual viable cell count was found to represent 3-fold the surviving percentage in a control experiment using an inoculum of the free yeast cells. Immobilized yeast cells could convert about 85% of the available sugars to ethanol over 28 days of the repeated-batch fermentation. The immobilized cells retained 50% of their viability for 16 days. After 48 days of repeated fermentation only 6% of the yeast cells were viable, and on the 52nd day no viable cells could be detected.  相似文献   

15.
Escherichia coli FBR5 containing recombinant genes for ethanol production on plasmids that are also required for anaerobic growth was cultivated continuously on 50 g/l xylose or glucose in the absence of antibiotics and without the use of special measures to limit the entry of oxygen into the fermenter. Under chemostat conditions, stable ethanol yields of ca. 80–85% of the theoretical were obtained on both sugars over 26 days at dilution rates of 0.045/h (xylose) and 0.075/h (glucose), with average plasmid retention rates of 96% (xylose) and 97% (glucose). In a continuous fluidized bed fermenter, with the cells immobilized on porous glass beads, the extent of plasmid retention by the free cells fell rapidly, while that of the immobilized cells remained constant. This was shown to be due to diffusion of oxygen through the tubing used to recirculate the medium and free cells. A change to oxygen-impermeable tubing led to a stable high rate of plasmid retention (more than 96% of both the free and immobilized cells) with ethanol yields of ca. 80% on a 50 g/l xylose feed. The maximum permissible level of oxygen availability consistent with high plasmid retention by the strain appears to be of the order of 0.1 mmol per hour per gram dry biomass, based on measurements of the rate of oxygen penetration into the fermenters. Revertant colonies lacking the ethanologenic plasmid were easily detectable by their morphology which correlated well with their lack of ampicillin resistance upon transfer plating.  相似文献   

16.
Protoplastization of Brevibacterium flavum cultured in a medium containing 50 μg l−1 and 5 units penicillin per ml was performed by lysozyme treatment. The protoplasts were immobilized in various polymer matrices, such as agar, polyacrylamide, calcium alginate, and κ-carrageenan and then used for l-glutamate production from glucose and urea in a batch system. The protoplasts immobilized in κ-carrageenan gels showed the highest productivity of l-glutamate being twice that of immobilized whole cells under optimum conditions. The maximum productivity reached 2.3 mg ml−1 initially. The immobilized B. flavum protoplasts could be used 8 times (192 h) for l-glutamate production retaining about 22% of the initial productivity during the last reaction.  相似文献   

17.
1. Glucose oxidase (EC 1.1.3.4), amyloglucosidase (EC 3.2.1.3), invertase (EC 3.2.1.26) and beta-galactosidase (EC 3.2.1.23) were covalently attached via glutaraldehyde to the inside surface of nylon tube. 2. The linked enzyme system, comprising invertase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of sucrose. 3. The linked enzyme system, comprising beta-galactosidase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of lactose. 4. The linked enzyme system, comprising amyloglucosidase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of maltose. 5. Mixtures of glucose oxidase and amyloglucosidase were immobilized within the same piece of nylon tube and used for the automated determination of maltose. 6. Mixtures of glucose oxidase and invertase were immobilized within the same piece of nylon tube and used for the automated determination of sucrose.  相似文献   

18.
Summary Columnar reactors containing immobilized cells of Zymomonas mobilis were utilized for the continuous production of ethanol from glucose. Two different immobilization strategies were investigated. In one case, cells were entrapped in borosilicate glass fiber pads, while in the other, cells were immobilized via flocculation. The reactors were operated in both the fixed-bed and expanded-bed manner. Ethanol productivities as high as 132 g/l·h were achieved. Data obtained from studies employing 5.0 and 10.0% glucose concentrations are presented. Problems encountered during the operation of the continuous, immobilized cell reactors are discussed.Operated by Union Carbide Corporation under contract W-7405-eng-26 with the U.S. Department of Energy.  相似文献   

19.
Summary ImmobilizedArthrobacter cells (NRRL-B-3728) were used for continuous isomerization of glucose to fructose in a bioreactor system. The system utilized stationary phase (55h) cells (2.2×109 CFU/ml saline) immobilized onto K-carrageenan (3% w/v) beads [cells were heated at 65°C for 10 min to inactivate endogenous proteolytic enzymes]. Immobilized-cell preparations were hardened using three different glutaraldehyde systems. Glutaraldehyde (0.2 M) treated-immobilized cells (pH 7.0, 5°C for 30 min) exhibited good gel strength and high glucose isomerase activities. Maximal bioreactor isomerization of 44% was achieved when a buffered feedstock containing 40% glucose was fed into the column (60°C) at a flow rate of 0.2 ml/min. The biological half-life of glucose isomerase activities in this system was 400 h. Scanning electron microscopy revealed large numbers of cells distributed within the beads. A thin layer surrounding the beads following glutaraldehyde treatment was mainly due to cross-linking reactions between cell proteins and glutaraldehyde. This layer prevented leaking of cells during continuous isomerization reaction.  相似文献   

20.
Candida tropicalis can ferment both hexose and pentose sugars. Here, we have used 31P and 13C nuclear magnetic resonance spectroscopy to study the capacity of this yeast species to metabolize glucose or xylose when immobilized in small (< 1-mm-diameter) agarose beads. Immobilized C. tropicalis metabolizing glucose showed rapid initial growth within the beads. A corresponding drop in the intracellular pH (from 7.8 to 7.25) and hydrolysis of intracellular polyphosphate stores were observed. Although the initial rate of glucose metabolism with immobilized C. tropicalis was similar to the rate observed previously in cell suspensions, a decrease by a factor of 2.5 occurred over 24 h. In addition to ethanol, a significant amount of glycerol was also produced. When immobilized C. tropicalis consumed xylose, cell growth within the beads was minimal. The intracellular pH dropped rapidly by 1.05 pH units to 6.4. Intracellular ATP levels were lower and intracellular Pi levels were higher than observed with glucose-perfused cells. Consumption of xylose by immobilized C. tropicalis was slower than was previously observed for oxygen-limited cell suspensions, and xylitol was the only fermentation product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号