首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Articular-cartilage proteoglycans in aging and osteoarthritis.   总被引:10,自引:5,他引:5       下载免费PDF全文
The composition of macroscopically normal hip articular cartilage obtained from dogs of various ages was studied. Pieces of cartilage with signs of degeneration were studied separately. In normal aging, the extraction yield of proteoglycans decreased; the keratan sulphate content of extracted proteoglycans increased and the chondroitin sulphate content decreased. The extracted proteoglycans were smaller in the older cartilage, mainly owing to a decrease in the chondroitin sulphate-rich region of the proteoglycan monomers. The hyaluronic acid-binding region and the keratan sulphaterich region were increased and the molar concentration of proteoglycan probably increase with increasing age. The degenerated cartilage had higher water content and the proteoglycans, as well as other tissue components, gave higher yields. The proteoglycan monomers from the degenerated cartilage were smaller than those from normal cartilage of the same age, and hence had a smaller chondroitin sulphate-rich region and some of the molecules also appeared to lack the hyaluronic acid-binding region. Increased proteolytic activity may be involved in the process of cartilage degeneration.  相似文献   

2.
Antibodies were raised in rabbits by injection of cartilage proteoglycan monomers, isolated hyaluronic acid-binding region, polysaccharide-peptides prepared by trypsin digestion of proteoglycans and link-protein. The rabbits injected with the proteoglycan monomers made antibodies reacting with the intact proteoglycan. The antiserum contained antibodies specific for, and also reacting with, the isolated hyaluronic acid-binding region and the keratan sulphate-rich region. In addition there were probably antibodies reacting with other structures of the proteoglycan monomer. When isolated hyaluronic acid-binding region was used for immunization the antibodies obtained reacted specifically with the hyaluronic acid-binding region. The antibodies obtained from rabbits immunized with the polysaccharide-peptides reacted with the proteoglycan monomers and showed a reaction identical with that of the chondroitin sulphate-peptides isolated after trypsin digestion of proteoglycans. The antibodies prepared with the link-protein as the antigen reacted only with the link-protein and not with any preparation from the proteoglycan monomer. Neither did any of the antisera raised against the proteoglycan monomer or its substructures react with the link-protein. Separately it was shown that the peptide 'maps' prepared from trypsin digests of the link-protein and the hyaluronic acid-binding region were different. Therefore it appears that the link-protein is not structurally related to the proteoglycan or the hyaluronic acid-binding region. Digestion of proteoglycan monomers or isolated hyaluronic acid-binding region with trypsin did not destroy the antigenic sites of the hyaluronic acid-binding region. In contrast trypsin digests of previously reduced and alkylated preparations did not react with the anti-(hyaluronic acid-binding region). The trypsin digests, however, reacted with both the antibodies directed against the chondroitin sulphate-peptides and those against the keratan sulphate-peptides. Trypsin digestion of the link-proteins destroyed the antigenic site and the reactivity with the antibodies. By combining immunoassay of proteoglycan preparations before and after trypsin digestion it is feasible to quantitatively determine its substructures by using the antisera described above.  相似文献   

3.
A peptide with hyaluronic acid-binding properties was isolated from trypsin digests of bovine articular cartilage proteoglycan aggregate. This peptide originated from the N-terminus of the proteoglycan core protein, retained its function of forming complexes with hyaluronate and link protein and contained at least one keratan sulfate chain. Amino acid sequence data demonstrated that the first six amino acid residues of the N-terminus of bovine articular cartilage proteoglycan core protein differed from the same region from the rat chondrosarcoma proteoglycan. Further sequence data indicate areas of considerable sequence homology in the hyaluronic acid-binding regions of proteoglycans from the two species.  相似文献   

4.
Monoclonal antibodies produced against chondroitinase-treated human adult cartilage proteoglycans were selected for their ability to recognize epitopes on native proteoglycans. Binding analyses revealed that four of these monoclonal antibodies (BCD-4, BCD-7, EFG-4 and KPC-190) each recognized a different epitope on the same proteoglycan molecule which represents a subpopulation of a high buoyant density (D1) fraction of human articular cartilage proteoglycans (10, 30, 50 and 60% in fetal-newborn, 1.5 years old, 15 years old and 52-56 years old cartilages, respectively). Analysis of epitope specificities revealed that BCD-7 and EFG-4 monoclonal antibodies recognized epitopes on proteoglycan monomer which are associated with the protein structure in that they are sensitive to cleavage by Pronase, papain and alkali treatment and do not include keratan sulphate, chondroitin sulphate or oligosaccharides. The BCD-4 and KPC-190 epitopes also proved to be sensitive to Pronase or papain digestion or to alkali treatment, but keratanase or endo-beta-galactosidase also reduced the immunoreactivity of these epitopes. These observations indicate that the BCD-4 and KPC-190 epitopes represent peptides substituted with keratan sulphate or keratan sulphate-like structures. The BCD-4 epitope is, however, absent from a keratan sulphate-rich fragment of human adult proteoglycan, while the other three epitopes were detected in this fragment. None of these four epitopes were detected in the link proteins of human cartilage, in the hyaluronic acid-binding region of human newborn cartilage proteoglycan, in Swarm rat chondrosarcoma proteoglycan, in chicken limb bud proteoglycan monomer and in the small dermatan sulphate-proteoglycan of bovine costal cartilage. EFG-4 and KPC-190 epitopes were not detected in human fetal cartilage proteoglycans, although fetal molecules contained trace amounts of epitopes reactive with BCD-4 and BCD-7 antibodies.  相似文献   

5.
A chondroitin sulphate proteoglycan capable of forming large aggregates with hyaluronic acid was identified in cultures of human glial and glioma cells. The glial- cell- and glioma-cell-derived products were mutually indistinguishable and had some basic properties in common with the analogous chondroitin sulphate proteoglycan of cartilage: hydrodynamic size, dependence on a minimal size of hyaluronic acid for recognition, stabilization of aggregates by link protein, and precipitability with antibodies raised against bovine cartilage chondroitin sulphate proteoglycan. However, they differed in some aspects: lower buoyant density, larger, but fewer, chondroitin sulphate side chains, presence of iduronic acid-containing repeating units, and absence (less than 1%) of keratan sulphate. Apparently the major difference between glial/glioma and cartilage chondroitin sulphate proteoglycans relates to the glycan rather than to the protein moiety of the molecule.  相似文献   

6.
Punch biopsies of bovine hip articular cartilage was sectioned according to depth and the proteoglycans were isolated. The mid-sections of the cartilage contained more proteoglycans than did either the superficial or the deepest portions of the cartilage proteoglycans than did either the superficial or the deepest portions of the cartilage. The most superficial 40 micrometer of the cartilage contained relatively more glucosaminoglycans compared with the remainder of the cartilage. The proteoglycans recovered from the surface 200 micrometer layer contained less chondroitin sulphate, were smaller and almost all of these molecules were able to interact with hyaluronic acid to form aggregates. From about 200 micrometer and down to 1040 micrometer from the surface, the proteoglycans became gradually somewhat smaller, probably owing to decreasing size of the chondroitin sulphate-rich region. The proportion of molecules that were able to interact with the hyaluronic acid was about 90% and remained constant with depth. The proteoglycans from the deepest layer near the cartilage-bone junction contained a large proportion of non-aggregating molecules, and the average size of the proteoglycans was somewhat larger. The alterations of proteoglycan structure observed with increasing depth of the articular cartilage beneath the surface layer (to 200 micrometer) are of the same nature as those observed with increasing age in full-thickness articular cartilage. The articular-cartilage proteoglycans were smaller and had much higher keratan sulphate and protein contents that did molecules isolated from bovine nasal or tracheal cartilage.  相似文献   

7.
Proteoglycans were extracted from the adult human meniscus under dissociative conditions and purified by CsCl-density-gradient centrifugation. The preparations of highest density contained proteoglycan that possessed the ability to interact with hyaluronic acid, was of large subunit size and was composed of chondroitin sulphate, keratan sulphate and sialic acid-containing oligosaccharides. This 'cartilage-like' proteoglycan also exhibited subunit and aggregate structures analogous to those of hyaline-cartilage proteoglycans when examined by electron microscopy. However, the composition of this proteoglycan was more comparable with proteoglycans from immature cartilage than from age-matched cartilage. The preparations from lower density, which were enriched in dermatan sulphate, contained smaller proteoglycan that was not able to interact with hyaluronic acid. This non-aggregating proteoglycan may be structurally distinct from the 'cartilage-like' proteoglycan, which does not contain dermatan sulphate.  相似文献   

8.
Low molecular mass proteoglycans (PG) were isolated from human articular cartilage and from pig laryngeal cartilage, which contained protein cores of similar size (Mr 40-44 kDa). However, the PG from human articular cartilage contained dermatan sulphate (DS) chains (50% chondroitinase AC resistant), whereas chains from pig laryngeal PG were longer and contained only chondroitin sulphate (CS). Disaccharide analysis after chondroitinase ABC digestion showed that the human DS-PG contained more 6-sulphated residues (34%) than the pig CS-PG (6%) and both contained fewer 6-sulphated residues than the corresponding high Mr aggregating CS-PGs from these tissues (86% and 20% from human and pig respectively). Cross-reaction of both proteoglycans with antibodies to bovine bone and skin DS-PG-II and human fibroblasts DS-PG suggested that the isolated proteoglycans were the humans DS-PG-II and pigs CS-PG-II homologues of the cloned and sequenced bovine proteoglycan. Polyclonal antibodies raised against the pig CS-PG-II were shown to cross-react with human DS-PG-II. SDS/polyacrylamide-gel analysis and immunoblotting of pig and human cartilage extracts showed that some free core protein was present in the tissues in addition to the intact proteoglycan. The antibodies were used in a competitive radioimmunoassay to determine the content of this low Mr proteoglycan in human cartilage extracts. Analysis of samples from 5-80 year-old humans showed highest content (approximately 4 mg/g wet wt.) in those from 15-25 year-olds and lower content (approximately 1 mg/g wet wt.) in older tissue (greater than 55 years). These changes in content may be related to the deposition and maintenance of the collagen fibre network with which this class of small proteoglycan has been shown to interact.  相似文献   

9.
The core protein of high buoyant density proteoglycans synthesized by chondrocytes in stage 24 chick limb bud mesenchymal cell cultures was cleaved with cyanogen bromide to produce 17 resolvable peptides on sodium dodecyl sulfate-polyacrylamide slab gels. Of these peptides, 10 appear to originate from the chondroitin sulfate-rich region, 2 appear to be derived from the keratan sulfate-rich region, and 5 seem to be derived from the hyaluronic acid-binding region. The peptides from the chondroitin sulfate-rich region are almost all large (200 to 64 kDa). In contrast, the peptides from the keratan sulfate-rich and hyaluronic acid-binding regions are relatively small (47 to 12 kDa). One peptide from the hyaluronic acid-binding region appears to contain mannose-rich N-linked oligosaccharides as inferred from its observed binding by concanavalin A. A different hyaluronic acid-binding region peptide and one of the keratan sulfate-rich peptides were shown to contain disulfide bonds and therefore may be involved in contributing to the tertiary structure of the hyaluronic acid-binding region. Based on these observations, a map of the chick chondrocyte proteoglycan core protein has been constructed.  相似文献   

10.
The rotary-shadowing technique for molecular electron microscopy was used to study cartilage proteoglycan structure. The high resolution of the method allowed demonstration of two distinct globular domains as well as a more strand-like portion in the core protein of large aggregating proteoglycans. Studies of proteoglycan aggregates and fragments showed that the globular domains represent the part of the proteoglycans that binds to the hyaluronic acid, i.e. the hyaluronic acid-binding region juxtapositioned to the keratan sulphate-attachment region. The strand-like portion represents the chondroitin sulphate-attachment region. Low-Mr proteoglycans from cartilage could be seen as a globule connected to one or two side-chain filaments of chondroitin sulphate.  相似文献   

11.
Fractionation of proteoglycans from bovine corneal stroma.   总被引:4,自引:0,他引:4       下载免费PDF全文
Proteoglycans were extracted from bovine corneal stroma with 4M-guanidinum chloride, purified by DEAE-dellulose chromatography (Antonopoulos et al., 1974) and fractionated by precipitation with ethanol into three fractions of approximately equal weight. One of these fractions consisted of a proteoglycan that contained keratan sulphate as the only glycosaminoglycan. In the othertwo fractions proteoglycans that contained chondroitin sulphate, dermatan sulphate and keratan sulphate were present. Proteoglycans which had a more than tenfold excess of galactosaminoglycans over keratan sulphate could be obtianed by further subfractionation. The gel-chromatographic patterns of the glucosaminoglycans before and after digestion with chondroitinase AC differed for the fractions. The individual chondroitin sulphate chains seemed to be larger in cornea than in cartilage. Oligosaccharides, possibly covalently linked to the protein core of the proteoglycans, could be isolated from all fractions. The corneal proteoglycans were shown to have higher protein contents and to be of smaller molecular size than cartilage proteoglycans.  相似文献   

12.
Full-depth plugs of adult human articular cartilage were cut into serial slices from the articular surface and analysed for their glycosaminoglycan content. The amount of chondroitin sulphate was highest in the mid-zone, whereas keratan sulphate increased progressively through the depth. Proteoglycans were isolated from each layer by extraction with 4M-guanidinium chloride followed by centrifugation in 0.4M-guanidinium chloride/CsCl at a starting density of 1.5 g/ml. The efficiency with which proteoglycans were extracted depended on slice thickness, and extraction was complete only when cartilage from each zone was sectioned at 20 microns or less. When thick sections (250 microns) were extracted, hyaluronic acid was retained in the tissue. Most of the proteoglycans, extracted from each layer under optimum conditions, could interact with hyaluronic acid to form aggregates, although the extent of aggregation was less in the deeper layers. Two pools of proteoglycan were identified in all layers by gel chromatography (Kav. 0.33 and 0.58). The smaller of these was rich in keratan sulphate and protein, and gradually increased in proportion through the cartilage depth. Chondroitin sulphate chain size was constant in all regions. The changes in composition and structure observed were consistent with the current model for hyaline-cartilage proteoglycans and were similar to those observed with increasing age in human articular cartilage.  相似文献   

13.
Dermatan sulfate proteoglycans were isolated from adult bovine sclera and adult bovine articular cartilage. Their immunological relationships were studied by enzyme-linked immunosorbent assays using polyclonal antibodies raised against the large and small dermatan sulfate proteoglycans from sclera and a polyclonal and monoclonal antibody directed against the small dermatan sulfate proteoglycans from cartilage. The small dermatan sulfate proteoglycans from sclera and cartilage displayed immunological cross-reactivity while there was no convincing evidence of shared epitope(s) with the larger dermatan sulfate proteoglycans, nor did these larger proteoglycans share any common epitopes with each other. A hyaluronic acid binding region was detected immunologically on the larger scleral dermatan sulfate proteoglycan but was absent from the larger dermatan sulfate proteoglycan of cartilage and both the small dermatan sulfate proteoglycans. These antibodies were used in immunofluorescence microscopy to localize the scleral proteoglycans and molecules containing these epitopes in the eye. The large scleral dermatan sulfate proteoglycan was restricted to sclera while molecules related to the small scleral and cartilage proteoglycans were found in the sclera, anterior uveal tract, iris, and cornea. Amino acid sequencing of the amino-terminal regions of the core proteins of the small dermatan sulfate proteoglycans from sclera and articular cartilage showed that all the first 14 amino acids analyzed were identical and the same as reported earlier for the small bovine skin and tendon dermatan sulfate proteoglycans. These studies demonstrate that the larger dermatan sulfate proteoglycans of sclera and cartilage are chemically unrelated to each other and to the smaller dermatan sulfate proteoglycans isolated from these tissues. The latter have closely related core proteins and probably represent a molecule with a widespread distribution in which the degree of epimerization of glucuronic acid and iduronic acid varies between tissues.  相似文献   

14.
Tryptic fragments of bovine nasal-cartilage proteoglycan, fractionated by dissociative density-gradient ultracentrifugation, were made to react by immunodiffusion against antiserum to a hyaluronidase-digest subfraction of cartilage proteoglycan monomer. This reaction produced two families of partly superimposed precipitin lines. One family was restricted to gradient fractions of medium or low buoyant density and included the immunoprecipitation reaction attributed to the hyaluronic acid-binding region of the cartilage proteoglycan monomer. The second family of precipitin lines was present alone in gradient fractions of high buoyant density. Immunodiffusion studies with antisera to relatively homogeneous keratan sulphate-rich and chondroitin sulphate-bearing fragment subfractions isolated from the gradient fraction of highest density indicated that both subfractions contained the antigenic determinants responsible for the second family of precipitin lines. Additional immunodiffusion studies, with the use of multispecific antisera to chondroitinase ABC digest and hyaluronidase digest of proteoglycan monomer, confirmed that the two subfractions shared antigenic determinants, and, in addition, indicated that these determinants were on one molecular species in the keratan sulphate-rich fragment subfraction and divided among at least three in the chondroitin sulphate-bearing fragment subfraction. Although an unprecedentedly large number of cartilage proteoglycan antigens could be recognized with the antisera employed in this cartilage proteoglycan antigens could be recognized with the antisera employed in this study, it was not possible to identify antigenic determinants unambiguously specific for the three structurally and functionally distinct regions of the cartilage proteoglycan monomer.  相似文献   

15.
Monoclonal antibodies produced against chick embryo limb bud proteoglycan (PG-M) were selected for their ability to recognize determinants on intact chondroitin sulfate chains. One of these monoclonal antibodies (IgM; designated MO-225) reacts with PG-M, chick embryo cartilage proteoglycans (PG-H, PG-Lb, and PG-Lt), and bovine nasal cartilage proteoglycan, but not with Swarm rat chondrosarcoma proteoglycan. The reactivity of PG-H to MO-225 is not affected by keratanase digestion but is completely abolished after chondroitinase digestion. Competitive binding analyses with various glycosaminoglycan samples indicate that the determinant recognized by MO-225 resides in a D-glucuronic acid 2-sulfate(beta 1----3)N-acetylgalactosamine 6-sulfate disaccharide unit (D-unit) common to antigenic chondroitin sulfates. A tetrasaccharide trisulfate containing D-unit at the reducing end is the smallest chondroitin sulfate fragment that can inhibit the binding of the antibody to PG-H. Decreasing the size of a D-unit-rich chondroitin sulfate by hyaluronidase digestion results in progressive reduction in its inhibitory activity. The results suggest that the epitope has a requirement for a long stretch of a disaccharide-repeating structure for a better fit to the antibody.  相似文献   

16.
The synthesis and turnover in vivo of 35S-labelled proteoglycans in mouse cervical, thoracic and lumbar intervertebral discs, and in costal cartilage, was investigated after intraperitoneal injection of [35S]sulphate. Intervertebral discs and costal cartilage synthesize similar amounts of 35S-labelled proteoglycans per microgram of DNA. Discs and cartilage all synthesize a major proteoglycan species (approx. 85%) of large hydrodynamic size and a minor species (approx. 15%) of small size. Both proteoglycans carry chondroitin sulphate chains. Keratan sulphate was not found associated with either species. The total 35S-labelled proteoglycan pool had a metabolic half-life (t1/2) of 10-12 days in discs, and 17 days in cartilage. The extractable major and minor species turned over at similar rates. Those proteoglycans left in the tissue after 29 days turn over very slowly. Approx. 50% of the major 35S-labelled proteoglycan species formed mixed aggregates with hyaluronic acid and rat chondrosarcoma proteoglycan. The ability to form aggregates did not decrease up to 45 days after synthesis. Of the heterogeneous population of proteoglycans comprising the major species, those remaining in the tissue 9 days after synthesis were of smaller average hydrodynamic size and had shorter chondroitin sulphate side chains than the average size at the time of synthesis. With increasing time after synthesis, proteoglycans were less readily extracted from the tissue by 4.0 M-guanidinium chloride than at the time of synthesis.  相似文献   

17.
The 1C6 monoclonal antibody to the hyaluronic acid-binding region weakly stained a 65-kD component in immunoblots of the chondroitin sulfate proteoglycans of brain, and the 8A4 monoclonal antibody, which recognizes two epitopes in the polypeptide portion of link protein, produced strong staining of a 45-kD component present in the brain proteoglycans. These antibodies were utilized to examine the localization of hyaluronic acid-binding region and link protein epitopes in rat cerebellum. Like the chondroitin sulfate proteoglycans themselves and hyaluronic acid, hyaluronic acid-binding region and link protein immunoreactivity changed from a predominantly extracellular to an intracellular (cytoplasmic and intra-axonal) location during the first postnatal month of brain development. The cell types which showed staining of hyaluronic acid-binding region and link protein, such as granule cells and their axons (the parallel fibers), astrocytes, and certain myelinated fibers, were generally the same as those previously found to contain chondroitin sulfate proteoglycans and hyaluronic acid. Prominent staining of some cell nuclei was also observed. In agreement with earlier conclusions concerning the localization of hyaluronic acid and chondroitin sulfate proteoglycans, there was no intracellular staining of Purkinje cells or nerve endings or staining of certain other structures, such as oligodendroglia and synaptic vesicles. The similar localizations and coordinate developmental changes of chondroitin sulfate proteoglycans, hyaluronic acid, hyaluronic acid-binding region, and link protein add further support to previous evidence for the unusual cytoplasmic localization of these proteoglycans in mature brain. Our results also suggest that much of the chondroitin sulfate proteoglycan of brain may exist in the form of aggregates with hyaluronic acid.  相似文献   

18.
Proteoglycans were extracted from bovine (15-18 months old) femoral-head cartilage. The heterogeneity of the A1D1 proteoglycan fraction was examined by gel chromatography, sedimentation velocity, sucrose rate-zonal centrifugation and CS2SO4 isopycnic centrifugation. In all cases polydisperse but unimodal distributions were obtained. Chemical analysis of the preparation yielded a galactosamine/glucosamine molar ratio of 7:1, and 13C n.m.r. spectroscopy showed that the chondroitin sulphate comprised equal proportions of the 4- and 6-sulphate isomers. Gel chromatography of a papain and Pronase digest of the proteoglycan indicated that the chondroitin sulphate chains had a Mn of approx. 10500. The mean buoyant density of the proteoglycan in pure CS2SO4 was 1.46 g/ml. Physical characterization of the proteoglycan preparation in 4M-guanidine hydrochloride, pH 7.4, by using conventional light-scattering gave a radius of gyration of 42 nm and a Mw of 0.96 X 10(6). Quasi-elastic light-scattering in the same solvent yielded a translational diffusion coefficient, D020, of 5.41 X 10(-8) cm2 X S-1, and ultracentrifugation gave a sedimentation coefficient, S020, of 12.0S. Thus from sedimentation-diffusion studies a Mw of 1.36 X 10(6) was calculated. The possible origins for the differences in the two molecular-weight estimates are discussed. It is concluded that the high-buoyant-density proteoglycans from bovine articular cartilage are significantly smaller than those from bovine nasal septum, and that this is largely due to the smaller size of their chondroitin sulphate chains.  相似文献   

19.
Antibodies specifically reacting with the link proteins, the hyaluronic acid-binding region and chondroitin sulphate-peptides were used to design specific radioimmunoassay procedures. The sensitivity of the method used for the link protein was about 20 ng/ml, and the other two components could be determined at concentrations of about 2 ng/ml. The radioimmunoassay procedures were tested by using proteoglycan subfractions or fragments thereof. The procedures used to quantify link protein and hyaluronic acid-binding region showed no cross-interference. Fragments of trypsin-digested proteoglycan monomers still reacted in the radioimmunoassay for hyaluronic acid-binding region. Subfractions of proteoglycan monomers separated according to size had a gradually higher relative content of the hyaluronic acid-binding region compared with both chondroitin sulphate-peptides and uronic acid, when the molecules were smaller. The proteoglycans therefore may contain a variably large chondroitin sulphate-rich region, which has a constant substitution with polysaccharide side chains.  相似文献   

20.
The assembly of proteoglycan aggregates in chondrocyte cell cultures was examined in pulse-chase experiments with the use of [35S]sulphate for labelling. Rate-zonal centrifugation in linear sucrose density gradients (10-50%, w/v) was used to separate the aggregated proteoglycans from monomers and to assess the size of the newly formed aggregates. The proportion of aggregates stabilized by link protein was assessed by competition with added exogenous aggregate components. The capacity of the proteoglycans synthesized in culture to compete with exogenous nasal-cartilage proteoglycans for binding was studied in dissociation-reassociation experiments. The results were as follows. (a) The proteoglycan monomers and the hyaluronic acid are exported separately and combined extracellularly. (b) The size of the aggregates increases gradually with time as the proportion of monomers bound to hyaluronic acid increases. (c) All of the aggregates present at a particular time appear to be link-stabilized and therefore not dissociated by added excess of nasal-cartilage proteoglycan monomer or hyaluronic acid oligomers. (d) The free monomer is apparently present as a complex with link protein. The monomer-link complexes are then aggregated to the hyaluronic acid. (e) The aggregates synthesized in vitro and the nasal-cartilage aggregates differ when tested for link-stabilization by incubation at low pH. The aggregates synthesized in vitro were completely dissociated whereas the cartilage proteoglycans remained aggregated. The results obtained from dissociation-reassociation experiments performed at low pH indicate that the proteoglycan monomer synthesized in vitro does not bind the hyaluronic acid or the link protein as strongly as does the nasal-cartilage monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号