首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification of a recombinant, thermostable alpha-amylase (MJA1) from the hyperthermophile, Methanococcus jannaschii, was investigated in the ethylene oxide-propylene oxide random copolymer (PEO-PPO)/(NH(4))(2)SO(4), and poly(ethylene glycol) (PEG)/(NH(4))(2)SO(4) aqueous two-phase systems. MJA1 partitioned in the top polymer-rich phase, while the remainder of proteins partitioned in the bottom salt-rich phase. It was found that enzyme recovery of up to 90% with a purification factor of 3.31 was achieved using a single aqueous two-phase extraction step. In addition, the partition behavior of pure amyloglucosidase in polymer/salt aqueous two-phase systems was also evaluated. All of the studied enzymes partitioned unevenly in these polymer/salt systems. This work is the first reported application of thermoseparating polymer aqueous two-phase systems for the purification of extremophile enzymes.  相似文献   

2.
Hairy roots of Tagetes patula have been grown in aqueous two-phase systems. After selecting suitable polymers from single-phase experiments (in which salt phases were unable to support growth in the desired concentrations) several two-phase systems were tested for their influence on cell growth and thiophene production. Cell growth occurred in all aqueous two-phase systems, but the highest growth rate was achieved in normal medium. There was no difference in thiophene production between medium and aqueous two-phase systems. The partition of thiophenes favoured slightly the more hydrophobic top phase in most cases, while the cells were confined to the bottom phase. One aqueous two-phase system (15% polyethyleneglycol 10,000 and 15% Reppal PES 200) was tested in a stirred tank reactor with normal medium as a control. The growth rate in medium was higher than in the aqueous two-phase system, while the thiophene production per unit cell weight was in the same range for both systems. The excretion of thiophenes in the reactor with the aqueous two-phase system was about ten times as high as in the control reactor. The amount excreted was however still not more than 3% of the total production.  相似文献   

3.
Hairy roots of Tagetes patula have been grown in aqueous two-phase systems. After selecting suitable polymers from single-phase experiments (in which salt phases were unable to support growth in the desired concentrations) several two-phase systems were tested for their influence on cell growth and thiophene production. Cell growth occurred in all aqueous two-phase systems, but the highest growth rate was achieved in normal medium. There was no difference in thiophene production between medium and aqueous two-phase systems. The partition of thiophenes favoured slightly the more hydrophobic top phase in most cases, while the cells were confined to the bottom phase. One aqueous two-phase system (15% polyethyleneglycol 10,000 and 15% Reppal PES 200) was tested in a stirred tank reactor with normal medium as a control. The growth rate in medium was higher than in the aqueous two-phase system, while the thiophene production per unit cell weight was in the same range for both systems. The excretion of thiophenes in the reactor with the aqueous two-phase system was about ten times as high as in the control reactor. The amount excreted was however still not more than 3% of the total production.  相似文献   

4.
采用考马斯亮蓝G250染色法测得室温下BSA在PEG/dextran双水相体系中的分配系数。以BSA在PEG/dextran体系的下相富集为目标,研究了PEG的分子量、浓度、dextran浓度以及所加入中性盐的种类与浓度、体系pH诸因素对其分配特性的影响。实验结果表明,在PEG4000/dextran体系中,采用PEG质量分数9%-dextran质量分数9%的浓度组成,同时在pH=7.0,NaC l浓度为0.2 mol.L-1或pH6.0,NaC l浓度为0.34 mol.L-1的工艺条件下萃取BSA均可达最小分配系数,其值为0.014。  相似文献   

5.
Erythrocytes from different species were subjected to partition in an aqueous, buffered Ficoll/Dextran two-phase system. The effects of different salt composition of the phase system on the distribution of erythrocytes was examined. Different ratios of sodium chloride to sodium phosphate buffer (pH 7.4) with the ionic strength varying from 0.176 to 0.288 M were used in the systems and similar relationship between the partition coefficients of the cells under study and the ionic strength were established. The relationships were treated according to a general equation previously established (Zaslavsky, B.Y., Miheeva, L.M., Metechkina, N.M., Pogorelov, V.M. and Rogozhin, S.V. (1978) FEBS Lett. 94, 77-80) and the results obtained were used to evaluate the relative hydrophobicity of the cells' surface.  相似文献   

6.
Partition of human erythrocytes in aqueous two-phase polymer systems produced by Ficoll and different molecular weight fractions of dextran and polyethylene glycol and the influence of the ionic composition on the cells' partition in the systems was studied. It is found that the Ficoll-dextran-40 system is characterized by a number of advantages as compared with the common dextran-polyethylene glycol system or the others systems under study. The main advantage of the system appears to be that it is possible to concentrate the red cells in the top phase or in the bottom phase of the system, depending on the system ionic composition. The influence of the nature and the concentration of salt additives on this two-phase system formation is examined.  相似文献   

7.
The effect of pH and salt concentration on the partitioning behavior of bovine serum albumin (BSA) and cytochrome c in an aqueous two-phase polymer system containing a novel pH-responsive copolymer that mimics the structure of proteins and poly(ethylene glycol) (PEG) was investigated. The two-phase system has low viscosity. Depending on pH and salt concentration, the cytochrome c was found to preferentially partition into the pH-responsive copolymer-rich (bottom) phase under all conditions of pH and salt concentrations considered in the study. This was caused by the attraction between the positively charged protein and negatively charged copolymer. BSA partitioning showed a more complex behavior and partitioned either to the PEG phase or copolymer phase depending on the pH and ionic strength. Extremely high partitioning levels (partition coefficient of 0.004) and very high separation ratios of the two proteins (up to 48) were recorded in the new systems. This was attributed to strong electrostatic interactions between the proteins and the charged copolymer.  相似文献   

8.
The novel approach of using aqueous two-phase systems for the elution of protein from ligand-coupled particles is investigated using pyruvate kinase and alcohol dehydrogenase from recombinant Saccharomyces cerevisiae and Cibacron blue F3G-A-coupled Sepharose CL6B (Blue-Sepharose) particles as a model system. The ligand-coupled particles distribute quantitatively to the polyethylene glycol-(PEG-) rich top phase and the recovered enzymes partition selectively to the dextran-(DEX-) rich bottom phase. An effective recovery and partial purification of pyruvate kinase and alcohol dehydrogenase from Blue-Sepharose particles using PEG8000-DEXT500 aqueous two-phase systems are demonstrated through a modest increase of salt concentration. The bioselective eluting agent, MgADP, which is useful in chromatographic operations, is not required for the process using aqueous two-phase systems. Recovery of pyruvate kinase, which is bound to ligand-coupled particles, in the DEX-rich bottom phase of aqueous two-phase systems can be up to 95% in one-step operations. The mixing time of ligand-coupled particles with aqueous two-phase systems is a major controlling variable. The salt concentration, the molecular weight of polymer, and the total volume of aqueous two-phase systems also influence the recovery of pyruvate kinase from ligand-coupled particles. The recovered enzymes in the DEX-rich bottom phase remain biologically stable over a long period of storage time. The concentration of product protein in a reduced volume and the easy separation from ligand-coupled particles are added advantages of the process using aqueous two-phase systems. Preliminary studies with goat polyclonal anti-pyruvate kinase-coupled Sepharose particles indicate that the process also may be applicable when a high-affinity ligand such as antibody is used. The experimental results and a theoretical derivation based on equilibrium models for binding/dissociation of ligands and proteins show that the process results in better recovery as compared to that of conventional bulk elution techniques.  相似文献   

9.
Gündüz U 《Bioseparation》2000,9(5):277-281
Partitioning of proteins in aqueous two-phase systems has been shown to provide a powerful method for separating and purifying mixtures of biomolecules by extraction. These systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. There are many factors which influence the partition coefficient K, the ratio of biomolecule concentration in the top phase to that in the bottom phase, in aqueous two-phase systems. The value of the partition coefficient relies on the physico-chemical properties of the target biomolecule and other molecules and their interactions with those of the chosen system. In this work, the partition behavior of pure bovine serum albumin in aqueous two-phase systems was investigated in order to see the effects of changes in phase properties on the partition coefficient K. The concentration of NaCl and pH were considered to be the factors having influence on K. Optimal conditions of these factors were obtained using the Box-Wilson experimental design. The optimum value of K was found as 0.0126 when NaCl concentration and pH were 0.14 M and 9.8, respectively, for a phase system composed of 8% (w/w) polyethylene glycol 3,350 - 9 (% w/w) dextran 37,500 - 0.05 M phosphate at 20 °C.  相似文献   

10.
This communication demonstrates that two-phase aqueous mixed (nonionic/ionic) micellar systems have the potential for improving the separation of proteins from viruses. Specifically, two separation experiments were performed to show that the addition of the anionic surfactant sodium dodecyl sulfate (SDS) to the two-phase aqueous nonionic n-decyl tetra(ethylene oxide) (C(10)E(4)) micellar system increases the yield of a model net positively charged protein, lysozyme, in the micelle-rich phase from 75 to 95%, while still maintaining approximately the same yield of a model net negatively charged virus, bacteriophage P22, in the micelle-poor phase (97% vs. 98%).  相似文献   

11.
A radioimmunoassay (RIA) procedure for the determination of pmol quantitites of morphine in capsule samples of Papaver somniferum was developed. An antiserum developed against a conjugate of morphine-3-hemisuccinate-BSA was relatively specific for morphine and possessed moderated cross-reactivity with codeine and mild cross-reactivity with thebaine, but none with narceine, papaverine, or noscapine. The standard curve was linear over a range of 0.01–0.20 ng. This assay allows for the rapid, sensitive and precise determination of morphine in unpurified aqueous extracts of capsule samples. The amounts of morphine in the aqueous extracts determined by radioimmunoassay were validated by high performance liquid chromatography (HPLC). The two methods show a high correlation coefficient (r = 0.98) with no significant difference in determinations of morphine content by RIA and HPLC.  相似文献   

12.
A novel method to obtain crystals of pure, anhydrous salt, using aqueous two-phase systems was studied. A concentrated salt solution is mixed with polyethylene glycol (PEG), upon which three phases are formed: salt crystals, a PEG-rich liquid and a salt-rich liquid. After removal of the solid salt, a two-phase system is obtained. Both liquid phases are recycled, allowing the design of a continuous process, which could be exploited industrially. The phase diagram of the system water–Na2SO4–PEG 3350 at 28°C was used. Several process alternatives are proposed and their economic potential is discussed. The process steps needed to produce sodium sulphate crystals include mixing, crystallisation, settling and, optionally, evaporation of water. The yield of sodium sulphate increases dramatically if an evaporation step is used.  相似文献   

13.
The development of a traceable molecular probe was investigated for the monitoring of partition behaviour of biomolecules in aqueous two-phase systems. This work was based upon the selective labelling of the free thiol group of human serum albumin (i.e. Cys34) with the fluorophore N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulphonic acid. The preparation of homogeneously labelled protein required purification operations. A succession of five processes was successfully applied, comprising two size-exclusion chromatographic operations by gel filtration and a series of three appropriately manipulated aqueous two-phase systems comprising PEG 1450 and phosphate salt. Aqueous two-phase partitioning is herein presented as an alternative to difficult separation and could be applied for ‘fine’ purifications.  相似文献   

14.
Summary We have developed a protein extraction technique which uses metal affinity ligands in PEG/salt aqueous two-phase systems. Cu(II)IDA-PEG will partition proteins according to their surface histidine contents in two-phase systems formed from sodium sulfate and polyethylene glycol. The nearly complete separation of human hemoglobin and human serum albumin in a single stage is presented as a demonstration of the effectiveness of metal affinity extraction in PEG/salt systems.  相似文献   

15.
Aqueous two-phase systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. Partitioning of proteins in such systems provides a powerful method for separating and purifying mixtures of biomolecules by extraction. If one of the phase forming polymers is a crosslinked gel, then the solution-controlled gel sorption may be considered as a modification of aqueous two-phase extraction. Since PEG/dextran systems are widely used in aqueous two-phase extraction and dextran gels (Sephadex) are common chromatographic media, we choose a PEG/dextran gel system as a model system in this study. The partitioning behavior of pure bovine serum albumin (BSA) in PEG/dextran gel systems is investigated to see the effects of variations in PEG and NaCl concentrations on the partition coefficient K. By making use of the Box-Wilson experimental design, K is shown to be maximized at 9.8 (%, w/w) PEG and 0.2 M NaCl concentrations, respectively, as 182.  相似文献   

16.
A model for the prediction of protein partition coefficients in aqueous two-phase systems has been developed. This model accounts for both charge-independent and electrostatic effects. The determination of nonelectrostatic effects was based on the model of Eiteman and Gainer for uncharged solutes while the electrostatic contribution was computed using TITRA, a program that uses a continuum electrostatic model to treat charge interactions in proteins and considers the effect of pH and ionic strength. The partition coefficients of Fusarium solani pisi recombinant cutinase have been satisfactorily predicted in polyethylene glycol (PEG) 1000 and phosphate aqueous two-phase systems at a pH range of 6.0-9.0. The model failed to predict the enzyme partitioning behavior at pH 4.5. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 248-257, 1997.  相似文献   

17.
Use of the thermodynamic principles of aqueous two-phase extraction (ATPE) to drive protein into a crosslinked gel is developed as a protein isolation and separation technique, and as a protein loading technique for drug delivery applications. A PEG/dextran gel system was chosen as a model system because PEG/dextran systems are widely used in aqueous two-phase extraction and dextran gels (Sephadex(R)) are common chromatographic media. The effects of polymer concentrations and molecular weights, salts, and pH on the partitioning of ovalbumin matched ATPE heuristics and data trends. Gel partition coefficients (Cgel/Csolution) increased with increasing PEG molecular weight and concentration and decreasing dextran concentration (increased gel swelling). The addition of PEG to the buffer solution yielded partition coefficients more than an order of magnitude greater than those obtained in systems with buffer alone, or added salt. A combined salt/PEG system yielded an additional order of magnitude increase. For example, when ovalbumin solution (2.3 mg/mL) was equilibrated with Sephadex(R) G-50 at pH 6.75, the partition coefficients were 0.13 in buffer, 0.11 in buffer with 0.22M KI, 2.3 in 12 wt% PEG-10,000 and 32.0 in 12 wt% PEG-10, 000 with 0.22M KI. The effect of anions and cations as well as ionic strength and pH on the partitioning of ovalbumin also matched ATPE heuristics. Using the heuristics established above, partition coefficients as high as 80 for bovine serum albumin and protein recoveries over 90% were achieved. In addition, the wide range of partition coefficients that were obtained for different proteins suggests the potential of the technique for separating proteins. Also, ovalbumin sorption capacities in dextran were as high as 450 mg/g dry polymer, and the sorption isotherms were linear over a broad protein concentration range.  相似文献   

18.
The ionic liquid (IL) Ammoeng110 contains cations with oligoethyleneglycol units and was found to be highly effective for the formation of aqueous two-phase systems (ATPS) that can be used for the biocompatible purification of active enzymes. Above critical concentrations of the IL and an inorganic salt in aqueous solution, phase separation takes place resulting in the formation of an IL-enriched upper and a salt-enriched lower phase. For the optimization of the composition of IL-based ATPS with regard to the extraction of catalytically active enzymes, the Box-Wilson method of experimental design was successfully applied; IL-based ATPS proved to be suitable for the purification and stabilization of two different alcohol dehydrogenases (from Lactobacillus brevis and a thermophilic bacterium). Both enzymes were enriched in the IL-containing upper phase resulting in an increase of specific activity by a factor of 2 and 4 respectively. Furthermore, the presence of IL within the system provided the opportunity to combine the extraction process with the performance of enzyme-catalyzed reactions. The IL was found to exhibit a stability improving effect on both enzymes and a solubility enhancing effect on hydrophobic substrates. Thus the conversion and volumetric productivity of ADH catalyzed reduction of acetophenone could be increased significantly.  相似文献   

19.
Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water–organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed.  相似文献   

20.
Phase diagrams of alcohol (ethanol or 2-propanol)/salt (phosphate or sulfate) aqueous two-phase systems were made. The system consisting of 60% (v/v) ethanol and 15% (w/v) phosphate was then used to separate glycyrrhizin from an extract of Glycyrrhiza uralensis Fisch and gave a 92% recovery of glycyrrhizin with 2.6-fold purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号