首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Prototrophic strains recovered from crosses between auxotrophic strains of the lignin-degrading basidiomycete Phanerochaete chrysosporium were induced to fruit. The progeny of most of these self-crosses were prototrophic, indicating that the nuclei of the original prototroph were wild-type recombinants rather than complementary heterokaryons and that the binucleate basidiospores of this organism are homokaryotic. Various wild-type strains were shown to have multinucleate cells lacking clamp connections and to possess a variable number of sterigmata per basidium. Colonies arising from single conidia of various wild-type strains were all capable of producing fruit bodies and basidiospores. In addition, single basidiospores from three wild-type strains all produced fruit bodies and basidiospores. Nonfruiting as well as fruiting isolates were obtained from single basidiospores of five other wild-type strains. Basidiospores from these fruiting isolates always yielded colonies that fruited, again indicating that the spores are homokaryotic. Nonfruiting isolates from the same strain did not produce basidiospores when allowed to form a heterokaryon, implying that these isolates do not represent mating types. All this evidence indicates that P. chrysosporium has a primary homothallic mating system. In addition to fruiting and nonfruiting phenotypes, basidiospores from strain OGC101, a derivative of ME-446, gave rise to colonies which did not grow on cellulose (Cel). The fruiting, nonfruiting, and Cel phenotypes differed from each other and from the parental wild-type strain in a variety of characteristics, including growth, conidiation, and evolution of 14CO2 from 14C-side chain-labeled lignin, indicating that strain OCG101 is a heterokaryon.  相似文献   

2.
Summary The ability of 45 fungal strains to degrade wheat straw and beech wood was studied. Degradation patterns were defined in terms of chemical evolution of substrates and changes in lignin and polysaccharides. Trametes versicolor produced an important degradation of lignin and increased substrate digestibility, but it caused high weight losses and gave rise to similar decay patterns on both substrates. A preferential degradation of lignin was produced during straw transformation by Pleurotus eryngii. The increase of soluble lignin and decreases of lignin content and H/C ratio defined the degradation tendency after principal component analysis. The cation exchange capacity and water and alkali solubility presented the highest loading factors for the characterization of fungal transformation of beech wood. Offprint requests to: A. T. Martínez  相似文献   

3.
In order to better understand which enzyme are of importance in lignin degradation, new cellulase deficient strains from Sporotrichum pulverulentum have been isolated by spontaneous and induced mutations from both wild type and from the earlier studied cellulase deficient strain 44. These new strains are xylanase positive (Xyl+), and produce considerably higher amounts of phenol oxidases (Pox) than either parent type. The new strains have been compared with the wild type and strain 44 with respect to their ability to release 14CO2 from a) vanillic acid labelled in the carboxyl, methoxyl and ring carbons; b) the dimer (4-methoxy-14C)-veratryl-glycerol--guaiacyl ether; c) 14C-ring-labelled DHP and 14C[-carbon side chain] labelled DHP.The new strains, the wild type and strain 44 were compared with respect to their ability to cause weight losses in wood blocks and to delignify wood. One of the new strains, 63-2, caused a higher weight loss in wood than either the wild type or strain 44. Another strain, 44-2, produced a higher weight loss than strain 44. An increase in acid-soluble lignin was observed in wood blocks treated for two weeks with the two new mutant strains and wild type. After prolonged incubation for 6 and 8 weeks the amount of acid-soluble lignin decreased.Abbreviations DHP Dehydrogenation polymerizate - DMS 2,2-dimethylsuccinic acid  相似文献   

4.
Eighteen mycoparasitic Trichoderma strains were tested for their ability to degrade heat-inactivated Bacillus cereus var. mycoides, B. megaterium, B. subtilis, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa and Serratia marcescens cells. The non-inductive and inductive ferment broths of five strains with good degrading abilities towards B. subtilis were investigated for specific degrading enzyme activities. In addition to trypsin- and chymotrypsin-like protease activities, -1,4-N-acetyl-glucosaminidase (NAGase) was also secreted. Strain Trichoderma harzianum T19 had the most outstanding degrading abilities. The extracellular degrading enzymes of this strain were separated on a Sephadex G-150 column, and their preliminary characterization was performed. The results demonstrated that muramidase-like activities are present in the ferment broth of this T. harzianum strain.  相似文献   

5.
Summary Among the four strains of Pleurotus tested, hybrid strain A was found to degrade flax shive faster than the other three strains. Strain A produced more polygalacturonase, pectinlyase, cellulase and laccase enzymes than the other three strains of Pleurotus. Maximum activities of laccase and polysaccharide degrading enzymes were correlated with high weight loss, reduction in the yield of lignin and holocellulose and the degree of polymerisation of holocellulose. The addition of crude extract of flax shive on unextracted-shive increased the production of primordia of all the four strains, but it did not increase the degradation of flax shive. Flavonoid type compounds were detected in the crude extract of flax shive and they may be responsible for the increase in the production of mushroom primordia.  相似文献   

6.
Phialophora species are shown to possess a variable capacity for growth on either copper, arsenic or copper-chrome-arsenic (CCA) supplemented laboratory media. The most copper tolerant species. Phialophora sp. A, P. malorum and P. mutabilis, were also the most arsenic resistant. Fine structural studies have shown intra- and to a lesser extent extracellular localization of copper which may provide a means of tolerating high external copper levels under culture conditions. Wood decay experiments have shown Phialophora spp. to have a good capacity to degrade K33 treated birch after 7·5 months but not pine, despite colonization. The most important wood degrading Phialophora were also the more copper/arsenic resistant species although non-tolerant species were also able to degrade treated birch. A comparison between the extreme copper levels tolerated by selected species with the amount of copper in treated wood may suggest that only sub-toxic levels may be obtained, levels which may not require special detoxification mechanisms for either colonization or decay in wood. In this respect, factors other than toxicity, particularly the nature of the substrate (e.g. lignin type and level) and reaction with CCA and ammoniacal-copper during treatment may be of greater significance.  相似文献   

7.
The lignin-degrading actinomycete Streptomyces viridosporus T7A readily degrades the lignin model compound dehydrodivanillin. Four mutants of this organism (produced by irradiation of spores with ultraviolet light) were shown to have lost the ability to catabolize dehydrodivanillin. These mutant strains retained an undiminished ability to degrade Douglas-fir lignin (14C-lignin 14CO2) as compared to the wild-type strain. None of the strains accumulated detectable quantities of dehydrodivanillin when grown on lignocellulose. Thus it appears that the enzymes involved in dehydrodivanillin catabolism are not a part of the streptomycete's system for degrading polymeric lignin. It is concluded that dehydrodivanillin is probably not a relevant model compound for study of lignin polymer degradation by Streptomyces viridosporus. Since many stable mutants completely lacking DHDV-degrading ability were readily obtained, it is suggested that the relevant catabolic enzymes may be encoded on a plasmid.Abbreviations DHDV dehydrodivanillin  相似文献   

8.
 The occurrence of killer toxins amongst yeasts in Brazilian Riesling Italico grape must was investigated by using the sensitive strain EMBRAPA-26B as a reference strain at 18°C and 28°C. From a total of 85 previously isolated yeasts, 21 strains showed ability to kill the sensitive strain on unbuffered grape must/agar (MA-MB) and 0.1 M citrate/phosphate-buffered yeast extract/peptone/dextrose/agar (YEPD-MB) media both supplemented with 30 mg/l methylene blue. The killer activity of only four yeasts depended on the incubation temperature rather than the medium used. At 28°C, the strains 11B and 53B were not able to show killer action. On the other hand, strains 49B and 84B did not kill the sensitive yeast at 18°C. The killer strain EMBRAPA-91B and a commercial wine killer yeast K-1 were employed to examine the sensitivity of the isolated yeasts on YEPD-MB and MA-MB at 18°C. The sensitivity and neutral characteristics of yeasts were shown to be dependent on the medium and the killer strain. Interactions, including K- R-, K- R+ and K+ R+ strains, simultaneously, have revealed that some K-R+ strains appear to protect the K- R- strain against the killer toxin. Sensitive dead cells, although to a less extent, also exhibited similar protection. Kinetic studies have shown that the maximum specific growth rates were higher for the 20B YEPD-MB-sensitive strain (μmax=0.517 h-1) than for both the 91B (μmax=0.428 h-1) and K-1 (μmax= 0.466 h-1) killer strains. The protective capacity of neutral or sensitive cells that contaminate a fermentation, as well as the higher maximum specific growth rate of sensitive yeasts, besides other factors, may preclude the dominance of a killer strain. This protective capacity may also reduce the risk of a sensitive inoculum being killed by wild-type killer yeasts in open non-sterile fermentation. Received: 3 November 1995/Received revision: 11 March 1996/Accepted: 15 April 1996  相似文献   

9.
Effect of constitutive expression of the aceEF-lpdA operon genes coding for the enzymes of NAD+-reducing pyruvate dehydrogenase complex on the anaerobic production of succinic acid from glucose by recombinant Escherichia coli strains was studied. Basic producer strains were obtained by inactivation of the main pathways for synthesis of acetic and lactic acids through deletion of the genes ackA, pta, poxB, and ldhA (SGM0.1) in E. coli MG1655 strain and by additional introduction of the Bacillus subtilis pyruvate carboxylase (SGM0.1 [pPYC]). A constitutive expression of the genes aceEF-lpdA in derivatives of the basic strains SGM0.1 PL-aceEF-lpdA and SGM0.1 PL-aceEF-lpdA [pPYC] was provided by replacing the native regulatory region of the operon with the lambda phage PL promoter. Molar yields of succinic acid in anaerobic glucose fermentation by strains SGM0.1 PL-aceEF-lpdA and SGM0.1 PL-aceEF-lpdA [pPYC] exceeded the corresponding yields of control strains by 2 and 33% in the absence and by 9 and 26% in the presence in media of HCO3 ion. It is concluded that an increase in the succinic acid production by strain SGM0.1 PL-aceEF-lpdA [pPYC] as compared with the strains SGM0.1 and SGM0.1 [pPYC], which synthesize this substance in the reductive branch of the tricarboxylic acid cycle, is caused by activation of the glyoxylate shunt.  相似文献   

10.
We studied the capacity of a selected strain of Gloeophyllum trabeum, alone or in combination with Resinicium bicolor, to defibrillate non treated deciduous wood at a semi industrial composting scale. Inoculum amount, aeration of the composted wood, type (freshly cut wood and wood stored since several years) and the quantity of wood used were analysed. The remaining cellular cohesion, lignin and holocellulose, as well as fungal biomass content in the wood after various treatments were determined. Results showed that G. trabeum rapidly colonised the non-sterile substrate and caused greater biodefibrillation compared with the control (non inoculated wood). Effects of the various treatments on biodefibrillation were compared and are discussed.  相似文献   

11.
Bioremediation of DDT in soil by genetically improved recombinants of the soil fungus Fusarium solani was studied. The parent strains were isolated from soil enriched with DDD or DDE (immediate anaerobic and aerobic degradation products of DDT), as further degradation of these products are slow processes compared to the parent compound. These naturally occurring strains isolated from soil, however, are poor degraders of DDT and differed in their capability to degrade its metabolites such as DDD, DDE, DDOH and DBP and other organochlorine pesticides viz. kelthane and lindane. Synergistic effect was shown by some of these strains, when grown together in the medium containing DDD and kelthane under mixed culture condition. No synergism in DDE degradation was observed with the strains isolated from enriched soil. DDD-induced proteins extracted from individual culture filtrate (exo-enzyme) when subjected to SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) showed complementary polypeptide bands in these strains i.e., each strain produced distinct DDD degrading polypeptide bands and the recombinant or hybrid strains produced all of the bands of the two parents and degraded DDD better than the parental strains. Recombinant hybrid strains with improved dehalogenase activity were raised by parasexual hybridisation of two such complementary isolates viz. isolate 1(P-1) and 4(P-2) showing highest complementation and are compatible for hyphal fusion inducing heterokaryosis. These strains are genetically characterised as Kel+BenRDBP-Lin- and Kel-BenrDBP+Lin+ respectively.Recombinants with mixed genotype, i.e., Kel+BenRDBP+Lin+ showing superior degradation quality for DDT were selected for bioremediation study. Recombination was confirmed by polypeptide band analysis of DDD induced exo-proteins from culture filtrate usingSDS-Polyacrylamide Gel Electrophoresis (PAGE) and RAPD (Random Amplified Polymorphic DNA) of genomic DNA using PCR (Polymerase Chain Reaction) technique. SDS-PAGE showed combination of DDD induced polypeptide bands characteristic of both the parents in the recombinants or the hybrids. PCR study showed the parent specific bands in the recombinant strains confirming gene transformation.  相似文献   

12.
The results of the cross reactions of the 27 strains of Azospirillum spp. with 4 fluorescent antibodies (FA) show a neat differentiation between the two species. A. lipoferum represents a more homogenous group in respect to FA reactions and highly fluorescent preparations were obtained with strains from a large scope origin against Sp59 FA, the type strain. In contrast A. brasilense contains at least three sub groups in respect to FA reactions. The first includes all denitrifing strains (nir+) which react with FA from Sp7 the type strain. None of the nir- strains reacted strongly with Sp7 FA. One part of the A. brasilense nir- group which includes the strains isolated from well sterilized rice and wheat roots (Sp 107, 107 st, 106 and 109 st) reacts with FA of their reference strain Sp107 but not with that of Sp28 FA. The strains isolated from unsterilized roots and soils reacted with SP28 FA and not with that of Sp107 FA. In addition there were 3 strains (Sp A4, 34 and 67) which reacted with neither of the FAs.Abbreviations Fa fluorescent antibody - FITC fluorescein isothiocyanate - Rh ITC gelatin-rhodamine isothiocyanate - nir+ nitrite reductase positive - nir- nitrite reductase negative  相似文献   

13.
Plasmid-carrying Pseudomonas putida strains degrade naphthalene through different biochemical pathways. The influence of various combinations of host bacteria and plasmids on growth characteristics and competitiveness of P. putida strains was studied in chemostat culture at a low dilution rate (D=0.05 h−1) with naphthalene as the sole source of carbon and energy. Under naphthalene limitation, the plasmid-bearing strains degrading naphthalene that use catechol 1,2-dioxygenase for catechol oxidation (ortho pathway), were the most competitive. The strains bearing plasmids that control naphthalene catabolism via catechol 2,3-dioxygenase (meta pathway), were less competitive. Under these conditions the strain carrying plasmid pBS4, which encodes for naphthalene catabolism via gentisic acid, was the least competitive. Received: 24 February 1997 / Received revision: 22 May 1997 / Accepted: 25 May 1997  相似文献   

14.
Isolation of a Bacterium Capable of Degrading Peanut Hull Lignin   总被引:4,自引:2,他引:2       下载免费PDF全文
Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter sp., was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled [14C]lignin-labeled lignocellulose and [14C]cellulose-labeled lignocellulose from the cordgrass Spartina alterniflora and could also degrade [14C]Kraft lignin from slash pine. After 10 days of incubation with [14C]cellulose-labeled lignocellulose or [14C]lignin-labeled lignocellulose from S. alterniflora, the bacterium mineralized 6.5% of the polysaccharide component and 2.9% of the lignin component.  相似文献   

15.
Poplar Lignin Decomposition by Gram-Negative Aerobic Bacteria   总被引:8,自引:7,他引:1       下载免费PDF全文
Eleven gram-negative aerobic bacteria (Pseudomonadaceae and Neisseriaceae) out of 122 soil isolates were selected for their ability to assimilate poplar dioxane lignin without a cosubstrate. Dioxane lignin and milled wood lignin degradation rates ranged between 20 and 40% of initial content after 7 days in mineral medium, as determined by a loss of absorbance at 280 nm; 10 strains could degrade in situ lignin, as evidenced by the decrease of the acetyl bromide lignin content of microtome wood sections. No degradation of wood polysaccharides was detected. Lignin biodegradation by Pseudomonas 106 was confirmed by 14CO2 release from labeled poplar wood, although in lower yields compared with results obtained through chemical analysis based on acetyl bromide residual lignin determination.  相似文献   

16.
Summary E. coli strains carrying the rnc-105 allele do not show any level of RNase III in extracts, grow slower than rnc + strains at temperatures up to 45°C and fail to grow at 45°C. Revertants which can grow at 45°C were isolated. The vast majority of them still do not grow as fast as rnc + strains and did not regain RNase III activity. The mutation(s) which caused them are suppressor mutations (physiological suppressors) which do not map in the immediate vicinity of the rnc gene. A few of the revertants regain normal growth, and contain normal levels of RNase III. They do not harbor the rnc-105 allele and therefore are considered to be true revertants. By using purines other than adenine it was possible to isolate rnc + pur - revertants from an rnc - pur - strain with relative ease. They behaved exactly like the true rnc + revertants isolated from rnc - strains at 45°C.A merodiploid strain which contains the rnc + gene on an episome behaves exactly like an rnc + strain with respect to growth and RNA metabolism, eventhough its specific RNase III activity is about 60% of that of an rnc + strain; thus the level of RNase III is not limiting in the cell.The rnc - strains show a characteristic pattern of transitory molecules, related to rRNA, 30S, 25S, p23 and 18S, which are not observed in rnc + strains. This pattern is unchanged in rnc - strains and in the revertants which are still lacking RNase III, regardless of the temperature in which RNA synthesis was examined (30° to 45°C). On the other hand, in the rnc + strains as well as in the true revertants and the rnc +/rnc - merodiploid, the normal pattern of p16 and p23 is observed at all temperatures. These findings suggest that all the effects observed in RNase III- strains are due to pleiotropic effects of the rnc-105 allele, and that the enzyme RNase III is not essential for the viability of the E. coli cell.  相似文献   

17.
The lignin degradation abilities of wildtype, a phenol oxidase-less mutant and a phenol oxidase-positive revertant of Sporotrichum pulverulentum were compared to determine if phenol oxidase activity is necessary for lignin degradation by white-rot fungi. The phenol oxidase-less mutant was unable to degrade kraft lignin or wood. The phenol oxidase-positive revertant, however, regained the ability of the wildtype to degrade kraft lignin and all of the major components of wood. It was found that kraft lignin and lignin-related phenols decreased cellulase and xylanase production by the phenol oxidase-less mutant. Addition of highly purified laccase increased the production of endo-1,4--glucanase in the phenol oxidase-less mutant in the presence of vanillic acid and kraft lignin. After addition of laccase to kraft lignin agar plates, the phenol oxidase-less mutant could degrade kraft lignin.It is proposed that phenol oxidase function in regulating the production of both lignin-and polysaccharide-degrading enzymes by oxidation of lignin and lignin-related phenols when S. pulverulentum is growing on wood.Abbreviation WT wildtype Sporotrichum pulverulentum Research supported by a grant from Stiftelsen Nils and Dorthi Troëdssons forskningsfond  相似文献   

18.
We focused in selecting four fungi, naturally living in Eucalyptus sp. fields, for application in accelerating stump decay. The wood-rot fungi Pycnoporus sanguineus (Ps), Lentinus bertieri (Lb) and Xylaria sp. (Xa) were isolated from Eucalyptus sp. field and the fungus Lentinula edodes (Led) was obtained from a commercial strain. All fungi were studied according to their capacity to degrade eucalyptus urograndis wood. In order to evaluate mass losses of seven years old eucalyptus urograndis' wood test blocks from heartwood were prepared added to glass flasks with red clay soil. The humidity of the soil was adjusted with 50 and 100% of its water retention capacity. Mass loss evaluations occurred at 30 until 120 days after eucalyptus wood degradation. Chemical analysis and soil pH were measured only in the last evaluation. Mycelial growth assays with potato-dextrose-agar, malt-agar and sawdust-dextrose-agar at three temperatures was carried out in order to get information about the best conditions of fungi growth. On the 120th day, Ps and Lb showed good capacity of wood degradation by leading to a high mass loss in soil with highest humidity. These fungi were the best consumers of lignin, hemicellulose, cellulose and extractives, caused acidification in the soil. Ps and Lb had faster mycelial growth in sawdust-dextrose-agar, especially in high temperature, comparing to Xa and Led. Xa and Led are not good eucalyptus urograndis heartwood degraders, because they consume preferentially hemicellulose.  相似文献   

19.
Ganoderma australe is a white-rot fungus that causes a selective wood biodelignification in some hardwoods found in the Chilean rainforest. Ceriporiopsis subvermispora is also a lignin-degrading fungus used in several biopulping studies. The enzymatic system responsible for lignin degradation in wood can also be used to degrade recalcitrant organic pollutants in liquid effluents. In this work, two strains of G. australe and one strain of C. subvermipora were comparatively evaluated in the biodegradation of ABTS and the dye Poly R-478 in liquid medium, and in the pretreatment of Eucalyptus globulus wood chips for further kraft biopulping. Laccase was detected in liquid and wood cultures with G. australe. Ceriporiopsis subvermispora produce laccase and manganese peroxidase when grown in liquid medium and only manganese peroxidase was detected during wood decay. ABTS was totally depleted by all strains after 8 days of incubation while Poly R-478 was degraded up to 40% with G. australe strains and up to 62% by C. subvermispora after 22 days of incubation. Eucalyptus globulus wood chips decayed for 15 days presented 1–6% of lignin loss and less than 2% of glucan loss. Kraft pulps with kappa number 15 were produced from biotreated wood chips with 2% less active alkali, with up to 3% increase in pulp yield and up to 20% less hexenuronic acids than pulps from undecayed control. Results showed that G. australe strains evaluated were not as efficient as C. subvermispora for dye and wood biodegradation, but could be used as a feasible alternative in biotechnological processes such as bioremediation and biopulping.  相似文献   

20.
Mineralization of polymeric wood lignin and its substructures is a result of complex reactions involving oxidizing and reducing enzymes and radicals. The degradation of methoxyl groups is an essential part of this process. The presence of wood greatly stimulates the demethoxylation of a non-phenolic lignin model compound (a [O14CH3]-labeled β-O-4 dimer) by the lignin-degrading white-rot fungi Phlebia radiata and Phanerochaete chrysosporium. When grown on wood, both fungi produced up to 47 and 40% 14CO2 of the applied 14C activity, respectively, under air and oxygen in 8 weeks. Without wood, the demethoxylation of the dimer by both fungi was lower, varying between 0.5 and 35%. Addition of nutrient nitrogen together with glucose decreased demethoxylation when the fungi were grown on spruce wood under air. Because the evolution of 14CO2 in the absence of wood was poor, the fungi may have preferably used wood as a carbon and nitrogen source. The amount of fungal mycelium, as determined by the ergosterol assay, did not show connection to demethoxylation. P. radiata also showed a high demethoxylation of [O14CH3]-labeled vanillic acid in the presence of birch wood. The degradation of lignin and lignin-related substances should be studied in the presence of wood, the natural substrate for white-rot fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号