首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dunaliella salina is a halotolerant green alga that is well known for its carotenoid producing capacity. The produced carotenoids are mainly stored in lipid globules. For various research purposes, such as production and extraction kinetics, we would like to determine and/or localise the carotenoid globules in vivo. In this study, we show that the carotenoid-rich globules emit clear green fluorescence, which can be used in, for example, fluorescence microscopy (e.g. CLSM) to obtain pictures of the cells and their carotenoid content.  相似文献   

2.
This study aimed to improve the efficiency of Paracoccus carotinifaciens-derived carotenoid (astaxanthin, adonirubin, adonixanthin) extraction using environmentally friendly Z-isomerization-accelerating catalysts. Adding naturally occurring catalysts such as isothiocyanates and polysulfides to the extraction solvent significantly improved the efficiency of carotenoid extraction, likely because of enhanced solubility of carotenoid Z-isomers compared with all-E-isomers. Indeed, addition of the catalysts markedly increased the content of carotenoid Z-isomers in the resulting extract. The use of a catalyst allyl isothiocyanate, which is abundantly included in Brassicaceae plant family, at high extraction temperature and long extraction time led to increased carotenoid recovery and Z-isomer content. These findings will enhance the efficiency of organic solvent-based extraction of carotenoids from carotenoid-rich sources. Numerous studies have reported that the Z-isomers of carotenoids exhibit greater bioavailability and antioxidant capacity than the all-E-isomers. Hence, the method proposed here utilizing Z-isomerization-accelerating catalysts could enhance both the extraction efficiency and beneficial health effects of carotenoids.  相似文献   

3.
The production of carotenoids from Blakeslea trispora cells in a synthetic medium has been reported, with the main products being beta-carotene, lycopene, and gamma-carotene. The effect of biomass pretreatment and solvent extraction on their selective recovery is reported here. Eight solvents of class II and III of the International Conference of Harmonization: ethanol, methanol, acetone, 2-propanol, pentane, hexane, ethyl acetate, and ethyl ether, and HPLC analysis were used for the evaluation of their selectivities towards the three main carotenoids with regard to different biomass pre-treatment. The average C(max) values (maximum concentration of caronoids in a specific solvent) were estimated to 16 mg/L with the five out of eight solvents investigated, whereas methanol, pentane, and hexane gave lower values of 10, 11, and 9 mg/L, respectively. The highest carotenoid yield was obtained in the case of wet biomass, where 44-56% is recovered with one solvent and three extractions and the rest is recovered only after subsequent treatment with acetone; thus, four extractions of 2.5 h are needed. Two extractions of 54 min are enough to recover carotenoids from dehydrated biomass, with the disadvantage of a high degree of degradation. Our results showed that, for maximum carotenoid recovery, ethyl ether, 2-propanol, and ethanol could be successfully used with biomass without prior treatment, whereas fractions enriched in beta-carotene or lycopene can be obtained by extraction with the proper solvent, thus avoiding degradation due to time-consuming processes.  相似文献   

4.
Summary Previously we used a simple, sensitive agar plate method to screen lipase activity from 1229 selected cultures including 508 bacteria, 479 yeasts, 230 actinomycetes and 12 fungi covering many genera and species. About 25% of the cultures tested were lipase-positive. These lipase-positive strains were further classified as good, moderate or weak enzyme producers. We have expanded our screening method to focus specifically on the pH dependence and thermostability of these lipase activities. The lipases exhibited various pH sensitivities and were divided into three groups: (i) lipases which are active at pH 5.5 but not at pH 7.5—produced by 36 bacteria, 23 yeasts and four actinomycetes; (ii) lipases which are active at pH 7.5 but not at pH 5.5—produced by 17 bacteria, four yeasts, two actinomycetes and one fungus; and (iii) lipases which are active at both pH 5.5 and pH 7.5—produced by 112 bacteria, 90 yeasts, 15 actinomycetes and five fungi. By screening at 60°C and pH 9.0, we further identified 50 bacteria and 26 yeasts that produce thermostable alkali-tolerant lipases. Product analyses confirmed our screening results. Lipases with specific pH dependency and thermostability have potential to be developed into industrial enzymes.  相似文献   

5.
Carotenoids are ubiquitous pigments synthesized by plants, fungi, algae, and bacteria. Industrially, carotenoids are used in pharmaceuticals, neutraceuticals, and animal feed additives, as well as colorants in cosmetics and foods. Scientific interest in dietary carotenoids has increased in recent years because of their beneficial effects on human health, such as lowering the risk of cancer and enhancement of immune system function, which are attributed to their antioxidant potential. The availability of carotenoid genes from carotenogenic microbes has made possible the synthesis of carotenoids in non-carotenogenic microbes. The increasing interest in microbial sources of carotenoid is related to consumer preferences for natural additives and the potential cost effectiveness of creating carotenoids via microbial biotechnology. In this review, we will describe the recent progress made in metabolic engineering of non-carotenogenic microorganisms with particular focus on the potential of Escherichia coli for improved carotenoid productivity. Amitabha Das and Sang-Hwal Yoon contributed equally to this work.  相似文献   

6.
Carotenoids are organic pigments that are produced predominantly by photosynthetic organisms and provide antioxidant activity to a wide variety of plants, animals, bacteria, and fungi. The carotenoid biosynthetic pathway is highly conserved in plants and occurs mostly in chromoplasts and chloroplasts. Leaf carotenoids play important photoprotective roles and targeted selection for leaf carotenoids may offer avenues to improve abiotic stress tolerance. A collection of 332 soybean [Glycine max (L.) Merr.] genotypes was grown in two years and total leaf carotenoid content was determined using three different methods. The first method was based on extraction and spectrophotometric determination of carotenoid content (eCaro) in leaf tissue, whereas the other two methods were derived from high-throughput canopy spectral reflectance measurements using wavelet transformed reflectance spectra (tCaro) and a spectral reflectance index (iCaro). An association mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs) to identify SNPs associated with total carotenoid content using a mixed linear model based on data from two growing seasons. A total of 28 SNPs showed a significant association with total carotenoid content in at least one of the three approaches. These 28 SNPs likely tagged 14 putative loci for carotenoid content. Six putative loci were identified using eCaro, five loci with tCaro, and nine loci with iCaro. Three of these putative loci were detected by all three carotenoid determination methods. All but four putative loci were located near a known carotenoid-related gene. These results showed that carotenoid markers can be identified in soybean using extract-based as well as by high-throughput canopy spectral reflectance-based approaches, demonstrating the utility of field-based canopy spectral reflectance phenotypes for association mapping.  相似文献   

7.
Abstract

The production of carotenoids from Blakeslea trispora cells in a synthetic medium has been reported, with the main products being β-carotene, lycopene, and γ-carotene. The effect of biomass pretreatment and solvent extraction on their selective recovery is reported here. Eight solvents of class II and III of the International Conference of Harmonization: ethanol, methanol, acetone, 2-propanol, pentane, hexane, ethyl acetate, and ethyl ether, and HPLC analysis were used for the evaluation of their selectivities towards the three main carotenoids with regard to different biomass pre-treatment. The average Cmax values (maximum concentration of caronoids in a specific solvent) were estimated to 16 mg/L with the five out of eight solvents investigated, whereas methanol, pentane, and hexane gave lower values of 10, 11, and 9 mg/L, respectively. The highest carotenoid yield was obtained in the case of wet biomass, where 44–56% is recovered with one solvent and three extractions and the rest is recovered only after subsequent treatment with acetone; thus, four extractions of 2.5 h are needed. Two extractions of 54 min are enough to recover carotenoids from dehydrated biomass, with the disadvantage of a high degree of degradation. Our results showed that, for maximum carotenoid recovery, ethyl ether, 2-propanol, and ethanol could be successfully used with biomass without prior treatment, whereas fractions enriched in β-carotene or lycopene can be obtained by extraction with the proper solvent, thus avoiding degradation due to time-consuming processes.  相似文献   

8.
Usually marine algae are an excellent source of pigments for different commercial sectors. Freshwater macroalgae can be exploited as a good source of biologically active compounds provided an appropriate extraction method is developed. The efficiency of four methods, like microwave‐assisted (MAE), ultrasound‐assisted extraction (UAE), supercritical fluid extraction (SFE) with ethanol as a co‐solvent, as well as conventional Soxhlet extraction were studied in the same conditions (time, solvent and temperature) for the recovery of chlorophylls and carotenoids from three freshwater green algae species: Cladophora glomerata, Cladophora rivularis and Ulva flexuosa. UV‐Vis spectrophotometry was used to determine chlorophyll a, chlorophyll b and total carotenoid content in obtained extracts. The results of this study showed that the advantages of novel extraction techniques (MAE and UAE) include higher yield and, in consequence, lower costs compared to traditional solvent extraction techniques. These methods were much more efficient in freshwater green algae pigment recovery than the classic Soxhlet extraction as well as SFE.  相似文献   

9.
The enhanced interest in carotenoid research arises partly because of their application in the food and health industries and partly because of the necessity to find a commercially viable natural source for their mass production. The bottlenecks in finding a natural source of carotenoids which can compete with the synthetic products is the mass production of the organism that produces carotenoids, cell harvesting and extraction methods of carotenoids. The microalga Botryococcus braunii is an interesting organism for its commercial value as a rich source of carotenoids. It contains lutein as major carotenoid which is considered to be one of the beneficial carotenoids in human health applications. The current paper reviews the status of B. braunii as an alternative source of carotenoid production on the commercial scale addressing aspects like cultures of algae, factors that enhance the production and accumulation of carotenoids, cell harvesting methods, and carotenoid extraction. The paper also presents an overview of identification, characterization and structural elucidation of carotenoids from B. braunii and their bioactivity.  相似文献   

10.
Carotenoids, such as lycopene, β-carotene, zeaxanthin, canthaxanthin and astaxanthin have many benefits for human health. In addition to the functional role of carotenoids as vitamin A precursors, adequate consumption of carotenoids prevents the development of a variety of serious diseases. Biosynthesis of carotenoids is a complex process and it starts with the common isoprene precursors. Condensation of these precursors and subsequent modifications, by introducing hydroxyl- and keto-groups, leads to the generation of diversified carotenoid structures. To improve carotenoid production, metabolic engineering has been explored in bacteria, yeast, and algae. The success of the pathway engineering effort depends on the host metabolism, specific enzymes used, the enzyme expression levels, and the strategies employed. Despite the difficulty of pathway engineering for carotenoid production, great progress has been made over the past decade. We review metabolic engineering approaches used in a variety of microbial hosts for carotenoid biosynthesis. These advances will greatly expedite our efforts to bring the health benefits of carotenoids and other nutritional compounds to our diet.  相似文献   

11.
To study the specificity of gastric lipases on carotenoid mono- and diesters, an enzymatic assay was applied. Digestions were carried out in phosphate buffer at pH 7.4 and 37 °C. As substrates we employed oleoresins from marigold (Tagetes erecta L.; lutein diesters), red paprika (Capsicum annuum L., mainly capsanthin diesters), papaya (Carica papaya L.; β-cryptoxanthin esters), and loquat (Eriobotrya japonica Lindl.; β-cryptoxanthin esters) as well as retinyl palmitate. These were reacted with porcine pancreatic lipase, porcine pancreatin, porcine cholesterol esterase, and human pancreatic lipase. As reference enzyme a yeast lipase from Candida rugosa was applied. A high turnover could be observed with porcine pancreatic lipase and porcine cholesterol esterase, indicating cholesterol esterase to be a plausible candidate for generation of free carotenoids in the gut. Human pancreatic lipase accepted only retinyl palmitate as substrate, carotenoid mono- and diesters were not hydrolyzed. The assay permits an approach for calculation of enzymatic activities towards carotenoid esters as substrates for the first time, which is based on the amount of enzyme formulation, present in the assay (U/mg solid). Furthermore, these studies provide deeper insight into carotenoid ester bioaccessibility.  相似文献   

12.
Carotenoids, a subfamily of terpenoids, are yellow- to red-colored pigments synthesized by plants, fungi, algae, and bacteria. They are ubiquitous in nature and take over crucial roles in many biological processes as for example photosynthesis, vision, and the quenching of free radicals and singlet oxygen. Due to their color and their potential beneficial effects on human health, carotenoids receive increasing attention. Carotenoids can be classified due to the length of their carbon backbone. Most carotenoids have a C40 backbone, but also C30 and C50 carotenoids are known. All carotenoids are derived from isopentenyl pyrophosphate (IPP) as a common precursor. Pathways leading to IPP as well as metabolic engineering of IPP synthesis and C40 carotenoid production have been reviewed expertly elsewhere. Since C50 carotenoids are synthesized from the C40 carotenoid lycopene, we will summarize common strategies for optimizing lycopene production and we will focus our review on the characteristics, biosynthesis, glycosylation, and overproduction of C50 carotenoids.  相似文献   

13.
Engineering novel carotenoids in microorganisms   总被引:8,自引:0,他引:8  
A considerable number of microbial and plant carotenoid biosynthesis genes have been cloned over the past few years. Functional heterologous expression of most of these genes has made it possible to engineer carotenoid biosynthesis in non-carotenogenic E. coli and yeasts. Recently, gene combination and molecular breeding of pathways have been used to produce novel and rare high-value carotenoids.  相似文献   

14.
Carotenoids are pigments synthesised by autotrophic organisms. For nestlings of raptorial species, which obtain carotenoids from the consumption of other heterotrophic species, the access to these pigments can be crucial. Carotenoids, indeed, have fundamental health maintenance functions, especially important in developing individuals as nestling kestrels. The aim of this study was to investigate how body carotenoid levels and skin pigmentation vary in kestrel nestlings (Falco tinnunculus) in relation to nesting parameters. Furthermore, we experimentally altered carotenoid availability (short- medium- and long-term) for nestlings and investigated skin and serum variance. The skin colour variance of 151 nestlings was explained by nest of origin, age and by the body condition (body mass corrected by age), older nestlings with higher body condition being redder. No difference in skin colour was detected between sexes. Differences in hue (skin “redness”) between treatments did not emerge during the first week, but did occur 15 days after administration between long-term supplemented and control chicks. In contrast, the serum carotenoid concentration showed a treatment-dependent increase after 5 days from the first carotenoid administration and at least after two supplemented feedings. In general, hue but not serum carotenoids, was correlated with the body condition of nestlings. Based on the increased skin pigmentation of nestling kestrels in the long-term experimental group, we suggest carotenoid availability to be limited for colour expression. The small increase of serum carotenoids due to supplementation is consistent with the hypothesis that there is a physiological constraint on these pigments, as well as an environmental limitation. The presented results are useful for the understanding of carotenoid uptake and accumulation by a wild raptorial species, located at the top of the food web, highlighting that carotenoids are a limited resource for kestrel nestlings.  相似文献   

15.
Enzyme extraction from solid matrix is as important step in solid-state fermentation to obtain soluble enzymes for further immobilization and application in biocatalysis. A method for the recovery of a pool of lipases from Penicillium simplicissimum produced by solid-state fermentation was developed. For lipase recovery different extraction solution was used and phosphate buffer containing Tween 80 and NaCl showed the best results, yielding lipase activity of 85.7 U/g and 65.7 U/g, respectively. The parameters with great impacts on enzyme extraction detected by the Plackett-Burman analysis were studied by Central Composite Rotatable experimental designs where a quadratic model was built showing maximum predicted lipase activity (160 U/g) at 25°C, Tween 80 0.5% (w/v), pH 8.0 and extraction solution 7 mL/g, maintaining constant buffer molarity of 0.1 M and 200 rpm. After the optimization process a 2.5 fold increase in lipase activity in the crude extract was obtained, comparing the intial value (64 U/g) with the experimental design (160 U/g), thus improving the overall productivity of the process.  相似文献   

16.
The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution. However, in plant light-harvesting complexes, the triplet wavefunction is shared between the carotenoids and their adjacent chlorophylls. This is not observed for the antenna proteins of purple bacteria, where the triplet is virtually fully located on the carotenoid molecule. These results explain the faster triplet-triplet transfer times in plant light-harvesting complexes. We show that this molecular mechanism, which spreads the location of the triplet wavefunction through the pigments of plant light-harvesting complexes, results in the absence of any detectable chlorophyll triplet in these complexes upon excitation, and we propose that it emerged as a photoprotective adaptation during the evolution of oxygenic photosynthesis.  相似文献   

17.
Carotenoids are widely spread terpenoids found in photosynthetic organisms and a number of non-photosynthetic fungi and bacteria. The photosynthetic non-sulfur purple bacterium Rubrivivax gelatinosus produces carotenoids by both the spheroidene and the normal spirilloxanthin pathways. The characteristics of two carotenogenesis enzymes, spheroidene monooxygenase CrtA and O-methyltransferase CrtF, were investigated. Disruption of the corresponding genes by insertional mutagenesis affected carotenoid species in both pathways, and the genetic evidence indicated that both genes are involved in the two pathways. In these mutants, several unusual hydroxy- and ketocarotenoids were identified by spectroscopic and chemical methods. Moreover, the carotenoid analyses demonstrated that a large number of different carotenoid intermediates are accepted as substrates by the CrtA enzyme. The combined manipulation of crtF and crtA allowed new carotenoids to be produced and broadened the diversity of structurally different carotenoids synthesized by Rvi. gelatinosus. Methylated carotenoids, such as spheroidene and spirilloxanthin, are known to function as accessory pigments in the light-harvesting and reaction-center complexes of purple bacteria; the demethylated carotenoids described here were able to fulfill the same functions in the mutants.  相似文献   

18.
Carotenoid Formation by Staphylococcus aureus   总被引:8,自引:6,他引:2       下载免费PDF全文
The carotenoid pigments of Staphylococcus aureus U-71 were identified as phytoene; zeta-carotene; delta-carotene; phytofluenol; a phytofluenol-like carotenoid, rubixanthin; and three rubixanthin-like carotenoids after extraction, saponification, chromatographic separation, and determination of their absorption spectra. There was no evidence of carotenoid esters or glycoside ethers in the extract before saponification. During the aerobic growth cycle the total carotenoids increased from 45 to 1,000 nmoles per g (dry weight), with the greatest increases in the polar, hydroxylated carotenoids. During the anaerobic growth cycle, the total carotenoids increased from 20 nmoles per g (dry weight) to 80 nmoles per g (dry weight), and only traces of the polar carotenoids were formed. Light had no effect on carotenoid synthesis. About 0.14% of the mevalonate-2-(14)C added to the culture was incorporated into the carotenoids during each bacterial doubling. The total carotenoids did not lose radioactivity when grown in the absence of (14)C for 2.5 bacterial doublings. The total carotenoids did not lose radioactivity when grown in the absence of (14)C for 2.5 bacterial doublings. The incorporation and turnover of (14)C indicated the carotenes were sequentially desaturated and hydroxylated to form the polar carotenoids.  相似文献   

19.
Valérie A. Olson 《Oikos》2006,112(3):620-628
Many different methods of reporting animal diets have been used in ecological research. These vary greatly in level of accuracy and precision and therefore complicate attempts to measure and compare diets, and quantitites of nutrients in those diets, across a wide range of taxa. For most birds, the carotenoid content of the diet has not been directly measured. Here, therefore, I use an avian example to show how different methods of measuring the quantities of various foods in the diet affect the relative rankings of higher taxa (families, subfamilies, and tribes), and species within these taxa, with regard to the carotenoid contents of their diets. This is a timely example, as much recent avian literature has focused on the way dietary carotenoids may be traded off among aspects of survival, fitness and signalling. I assessed the mean dietary carotenoid contents of representatives of thirty higher taxa of birds using four different carotenoid intake indices varying in precision, including trophic levels, a coarse-scale and a fine-scale categorical index, and quantitative estimates of dietary carotenoids. This last method was used as the benchmark. For comparisons among taxa, all but the trophic level index were significantly correlated with each other. However, for comparisons of species within taxa, the fine-scale index outperformed the coarse-scale index, which in turn outperformed the trophic level index. In addition, each method has advantages and disadvantages, as well as underlying assumptions that must be considered. Examination and comparison of several possible methods of diet assessment appears to highlight these so that the best possible index is used given available data, and it is recommended that such a step be taken prior to the inclusion of estimated nutrient intake in any statistical analysis. Although applied to avian carotenoids here, this method could readily be applied to other taxa and types of nutrients.  相似文献   

20.
Shrimp waste is an important source of natural carotenoid. Studies were carried out to determine the extraction yield of shrimp waste carotenoids in different vegetable oils. Highest yield was obtained by extraction using refined sunflower oil compared to groundnut oil, gingelly oil, mustard oil, soy oil, coconut oil and rice bran oil. The extraction yield of carotenoids in sunflower oil was significantly influenced by level of oil to waste (p < 0.05), time (p < 0.01) and temperature (p < 0.001) of heating waste with oil before centrifugation to separate pigmented oil. A regression equation was derived for carotenoid yield as a function of time of heating, temperature of heating and oil level to waste. The optimized conditions for extraction of shrimp waste carotenoids in sunflower oil were determined to be oil level to waste of 2, temperature of 70 degrees C and heating time of 150 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号