首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic analysis of the MAPK and PI3K/Akt signaling pathways   总被引:1,自引:0,他引:1  
Computational modeling of signal transduction is currently attracting much attention as it can promote the understanding of complex signal transduction mechanisms. Although several mathematical models have been used to examine signaling pathways, little attention has been given to crosstalk mechanisms. In this study, an attempt was made to develop a computational model for the pathways involving growth-factor-mediated mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3'-kinase/protein kinase B (PI3K/Akt). In addition, the dynamics of the protein activities were analyzed based on a set of kinetic data. The simulation approach integrates the information on several levels and predicts systems behavior. The in-silico analysis conducted revealed that the Raf and Akt pathways act independently.  相似文献   

2.
3.
Sonic hedgehog (Shh) has been reported to act as a mitogen and survival factor for muscle satellite cells. However, its role in their differentiation remains ambiguous. Here, we provide evidence that Shh promotes the proliferation and differentiation of primary cultures of chicken adult myoblasts (also termed satellite cells) and mouse myogenic C2 cells. These effects are reversed by cyclopamine, a specific chemical inhibitor of the Shh pathway. In addition, we show that Shh and its downstream molecules are expressed in adult myoblast cultures and localize adjacent to Pax7 in muscle sections. These gene expressions are regulated during postnatal muscle growth in chicks. Most importantly, we report that Shh induces MAPK/ERK and phosphoinositide 3-kinase (PI3K)-dependent Akt phosphorylation and that activation of both signaling pathways is essential for Shh's signaling in muscle cells. However, the effect of Shh on Akt phosphorylation is more robust than that on MAPK/ERK, and data suggest that Shh influences these pathways in a manner similar to IGF-I. By exploiting specific chemical inhibitors of the MAPK/ERK and PI3K/Akt signaling pathways, UO126 and Ly294002, respectively, we demonstrate that Shh-induced Akt phosphorylation, but not that of MAPK/ERK, is required for its promotive effects on muscle cell proliferation and differentiation. Taken together, we suggest that Shh acts in an autocrinic manner in adult myoblasts, and provide first evidence of a role for PI3K/Akt in Shh signaling during myoblast differentiation.  相似文献   

4.
5.
Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3′-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.  相似文献   

6.
In order to elucidate the role of the mitogen-activated protein kinases, including JNK, p38 MAPK and ERK, as well as the survival-associated PI3K/Akt signaling pathway, in the response to chemotherapy, we have conducted a comparative study regarding the effects of doxorubicin on these pathways. Doxorubicin was determined to elicit the apoptosis of NIH3T3 cells in a dose-dependent manner. Prior to cell death, both Akt and p38 MAPK were transiently activated, and subsequently inactivated almost wholly, whereas ERK and JNK evidenced sustained activations in response to the drug treatment. The inhibition of PI3K/Akt and p38 MAPK both accelerated and enhanced doxorubicin-induced apoptosis and ERK inhibition apparently exerted negative effect on apoptosis. The modulation of PI3K/Akt activation by treatment of LY294002 or expression of Akt mutants such as Akt-DN or Myr-Akt exerted a significant effect on the activation of ERK1/2. We also observed that PI3K/Akt and sustained ERK activation were associated intimately with the etoposide-induced apoptosis. Taken together, our results clearly suggest that the differential regulation of the PI3K/Akt, ERK1/2, and p38 MAPK signaling pathways are crucial in the context of DNA-damaging drug-induced apoptosis, and this has compelled us to propose that the sustained activation of ERK1/2 pathway may be generally involved in the apoptosis induced by anticancer DNA-damaging drugs, including doxorubicin and etoposide.  相似文献   

7.
Estrogens play a critical role in the regulation of cellular proliferation, differentiation, and apoptosis. Evidence indicates that this regulation is mediated by a complex interface of direct control of gene expression (so-called "genomic action") and by regulation of cell-signaling/phosphorylation cascades (referred to as the "non-genomic", or "extranuclear" action). However, the mechanisms of the non-genomic action of estrogens are not well defined. We have recently described the identification of a novel scaffold protein termed MNAR (modulator of non-genomic action of estrogen receptor), that couples conventional steroid receptors with extranuclear signal transduction pathways, thus potentially providing additional and tissue- or cell-specific level of steroid hormone regulation of cell functions. We have demonstrated that the MNAR is required for ER alpha (ERa) interaction with p60(src) (Src), which leads to activation of Src/MAPK pathway. Our new data also suggest that activation of cSrc in response to E2 leads to MNAR phosphorylation, interaction with p85, and activation of the PI3 and Akt kinases. These data therefore suggest that MNAR acts as an important scaffold that integrates ERa action in regulation of important signaling pathways. ERa non-genomic action has been suggested to play a key role in estrogen-induced cardio-, neuro-, and osteo-protection. Therefore, evaluation of the molecular crosstalk between MNAR and ERa may lead to development of functionally selective ER modulators that can separate between beneficial, prodifferentiative effects in bone, the cardiovascular system and the CNS and the "detrimental", proliferative effects in reproductive tissues and organs.  相似文献   

8.
We previously reported that the 3,5,3'-triiodo-L-thyronine (T3)-induced increase of Na-K-ATPase activity in rat alveolar epithelial cells (AECs) required activation of Src kinase, PI3K, and MAPK/ERK1/2. In the present study, we assessed the role of Akt in Na-K-ATPase activity and the interaction between the PI3K and MAPK in response to T3 by using MP48 cells, inhibitors, and constitutively active mutants in the MP48 (alveolar type II-like) cell line. The Akt inhibitor VIII blocked T3-induced increases in Na-K-ATPase activity and amount of plasma membrane Na-K-ATPase protein. The Akt inhibitor VIII also abolished the increase in Na-K-ATPase activity induced by constitutively active mutants of either Src kinase or PI3K. Moreover, constitutively active mutants of Akt increased Na-K-ATPase activity in the absence of T3. Thus activation of Akt was required for T3-induced Na-K-ATPase activity in AECs and is sufficient in the absence of T3. Inhibitors of Src kinase (PP1), PI3K (wortmannin), and ERK1/2 (U0126) all blocked the T3-induced Na-K-ATPase activity. PP1 blocked the activation of PI3K and also ERK1/2 by T3, whereas U0126 did not prevent T3 activation of Src kinase or PI3K activity. Wortmannin did not significantly alter T3-increased MAPK/ERK1/2 activity, suggesting that T3-activated PI3K/Akt and MAPK/ERK1/2 pathways acted downstream of the Src kinase. Furthermore, in the absence of T3, a constitutively active mutant of Src kinase increased activities of Na-K-ATPase, PI3K, and MAPK/ERK1/2. A constitutively active mutant of PI3K enhanced Na-K-ATPase activity but did not alter the MAPK/ERK1/2 activity significantly. In summary, in adult rat AECs T3-stimulated Src kinase activity can activate both PI3K/Akt and MAPK/ERK1/2, and activation of Akt is necessary for T3-induced Na-K-ATPase activity.  相似文献   

9.
10.
The osteoblasts could be lead to the occurrence of apoptosis by oxidative stress. The zinc transporter family SLC30A (ZnTs) plays an important role in the regulation of zinc homeostasis, however, its function in apoptosis of MC3T3-E1 cells remains unknown. This study was aimed to investigate the role of zinc transporters in cell survival, particularly in MC3T3-E1 cells, during oxidative stress, and the molecular mechanism involved. Our study found that hydrogen peroxide can induce zinc-overloaded in the cells. While high concentration of zinc plays an important role in inducing apoptosis of the MC3T3-E1 cells, we demonstrated that ZnT7 can protect MC3T3-E1 cells and reduce the aggregation of intracellular free zinc ions as well as inhibit apoptosis induced by H2O2. Moreover, ZnT7 overexpression enhanced the anti-apoptotic effects. Interestingly, suppression of ZnT7 by siRNA could significantly exacerbate apoptosis in MC3T3-E1 cells. We also found that ZnT7 promotes cell survival via two distinct signaling pathways involving activation of the PI3K/Akt-mediated survival pathway and activation of MAPK/ERK pathway. Collectively, these results suggest that ZnT7 overexpression significantly protects osteoblasts cells from apoptosis induced by H2O2. This effect is mediated, at least in part, through activation of PI3K/Akt and MAPK/ERK pathways.  相似文献   

11.
Sonic Hedgehog (Shh) has been shown to promote adult myoblast proliferation and differentiation and affect Akt phosphorylation via its effector Smoothened (Smo). Here, the relationship between Shh and insulin-like growth factor I (IGF-I) was examined with regard to myogenic differentiation via signaling pathways which regulate this process. Each factor enhanced Akt and MAPK/ERK (p42/44) phosphorylation and myogenic factor expression levels in a dose-responsive manner, while combinations of Shh and IGF-I showed additive effects. Blockage of the IGF-I effects by neutralizing antibody partially reduced Shh's effects on signaling pathways, suggesting that IGF-I enhances, but is not essential for Shh effects. Addition of cyclopamine, a Smo inhibitor, reduced Shh- and IGF-I-induced Akt phosphorylation in a similar manner, implying that Shh affects gain of the IGF-I signaling pathway. This implication was also examined via a genetic approach. In cultures derived from Smo(mut) (MCre;Smo(flox/flox)) mice lacking Smo expression specifically in hindlimb muscles, IGF-I-induced Akt and p42/44 phosphorylation was significantly reduced compared to IGF-I's effect on Smo(cont) cells. Moreover, remarkable inhibition of the stimulatory effect of IGF-I on myogenic differentiation was observed in Smo(mut) cultures, implying that intact Smo is required for IGF-I effects in myoblasts. Immunoprecipitation assays revealed that tyrosine-phosphorylated proteins, including the regulatory unit of PI3K (p85), are recruited to Smo in response to Shh. Moreover, IGF-IR was found to associate with Smo in response to Shh and to IGF-I, suggesting that Shh and IGF-I are already integrated at the receptor level, a mechanism by which their signaling pathways interact in augmenting their effects on adult myoblasts.  相似文献   

12.
The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species-dependent increase in phosphatase and tensin homolog activity in reperfusion period relieves ERK1/2 from inhibition of AKT.  相似文献   

13.
Several reports suggest that ELF-EMF exposures interact with biological processes including promotion of cell proliferation. However, the molecular mechanisms by which ELF-EMF controls cell growth are not completely understood. The present study aimed to investigate the effect of ELF-EMF on keratinocytes proliferation and molecular mechanisms involved. Effect of ELF-EMF (50 Hz, 1 mT) on HaCaT cell cycle and cells growth and viability was monitored by FACS analysis and BrdU assay. Gene expression profile by microarray and qRT-PCR validation was performed in HaCaT cells exposed or not to ELF-EMF. mTOR, Akt and MAPKs expressions were evaluated by Western blot analysis. In HaCaT cells, short ELF-EMF exposure modulates distinct patterns of gene expression involved in cell proliferation and in the cell cycle. mTOR activation resulted the main molecular target of ELF-EMF on HaCaT cells. Our data showed the increase of the canonical pathway of mTOR regulation (PI3K/Akt) and activation of ERK signaling pathways. Our results indicate that ELF-EMF selectively modulated the expression of multiple genes related to pivotal biological processes and functions that play a key role in physio-pathological mechanisms such as wound healing.  相似文献   

14.
15.
The PI3K/Akt/mTOR signal transduction pathway plays a central role in multiple myeloma (MM) disease progression and development of therapeutic resistance. mTORC1 inhibitors have shown limited efficacy in the clinic, largely attributed to the reactivation of Akt due to rapamycin induced mTORC2 activity. Here, we present promising anti-myeloma activity of MK-2206, a novel allosteric pan-Akt inhibitor, in MM cell lines and patient cells. MK-2206 was able to induce cytotoxicity and inhibit proliferation in all MM cell lines tested, albeit with significant heterogeneity that was highly dependent on basal pAkt levels. MK-2206 was able to inhibit proliferation of MM cells even when cultured with marrow stromal cells or tumor promoting cytokines. The induction of cytotoxicity was due to apoptosis, which at least partially was mediated by caspases. MK-2206 inhibited pAkt and its down-stream targets and up-regulated pErk in MM cells. Using MK-2206 in combination with rapamycin (mTORC1 inhibitor), LY294002 (PI3K inhibitor), or U0126 (MEK1/2 inhibitor), we show that Erk- mediated downstream activation of PI3K/Akt pathway results in resistance to Akt inhibition. These provide the basis for clinical evaluation of MK-2206 alone or in combination in MM and potential use of baseline pAkt and pErk as biomarkers for patient selection.  相似文献   

16.
PI3K/Akt信号传导通路与肿瘤   总被引:3,自引:0,他引:3  
信号转导通路的异常激活是肿瘤细胞的发生、发展重要步骤,PI3K/Akt 信号通路在人类绝大多数恶性肿瘤中被异常激活,其在肿瘤的增殖、存活、细胞运动、抵抗凋亡、血管发生和转移以及对化疗耐药、放疗抗拒中发挥了重要作用.因此,通过对PI3K/Akt 通路的研究进一步了解肿瘤的发生、发展机制,并寻求抗肿瘤药物的新靶点,本文就 PI3K/Akt 信号转导通路的结构特点、与肿瘤发生、发展的关系及其时放化疗的影响作一综述.  相似文献   

17.
In the present paper, we describe multiple levels of cross-talk between the PI3K (phosphoinositide 3-kinase)/Akt and Ras/MAPK (mitogen-activated protein kinase) signalling pathways. Experimental data and computer simulations demonstrate that cross-talk is context-dependent and that both pathways can activate or inhibit each other. Positive influence of the PI3K pathway on the MAPK pathway is most effective at sufficiently low doses of growth factors, whereas negative influence of the MAPK pathway on the PI3K pathway is mostly pronounced at high doses of growth factors. Pathway cross-talk endows a cell with emerging capabilities for processing and decoding signals from multiple receptors activated by different combinations of extracellular cues.  相似文献   

18.
In vitro experiments have shown that the establishment of cell-cell contacts in intestinal epithelial cell cultures is a critical step in initiating ERK inhibition, cell cycle arrest, and induction of the differentiation process. Herein, we determined the mechanisms through which E-cadherin-mediated cell-cell contacts modulate the ERK pathway in intestinal epithelial cells. We report that: (1) removal of calcium from the culture medium of newly confluent Caco-2/15 cells (30 min, 4 mM EGTA) results in the disruption of both adherens and tight junctions and clearly decreases Akt phosphorylation while increasing MEK and ERK activities. Akt, MEK, and ERK activation levels return to control levels 60 min after calcium restoration; (2) the use of E-cadherin blocking antibodies efficiently prevents Akt phosphorylation and MEK-ERK inhibition after 70 min of calcium restoration; (3) using the PI3K inhibitor LY294002 (15 microM) in calcium switch experiments, we demonstrate that the assembly of adherens junctions activates Akt activity and triggers the inhibition of ERK1/2 activities in a PI3K-dependent manner; (4) adenoviral infection of confluent Caco-2/15 cells with a constitutively active mutant of Akt1 strongly represses ERK1/2 activities; (5) inhibition of PI3K abolishes Akt activity but leads to a rapid and sustained activation of the MEK-ERK1/2 in confluent differentiating Caco-2/15 cells, but not in undifferentiated growing Caco-2/15 cells. Our data suggest that E-cadherin engagement leads to MEK/ERK inhibition in a PI3K/Akt-dependent pathway. This mechanism may account for the role of E-cadherin in proliferation/differentiation transition along the crypt-villus axis of the human intestinal epithelium.  相似文献   

19.
The extracellular signal-regulated kinase (ERK) and Akt have been reported to be activated by ischemia/reperfusion in vivo. However, the signaling pathways involved in activation of these kinases and their potential roles were not fully understood in the postischemic kidney. In the present study, we observed that these kinases are activated by hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion, in opossum kidney (OK) cells and elucidated the signaling pathways of these kinases. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-12h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of ERK upstream MAPK/ERK kinase (MEK), but not by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), whereas Akt activation was blocked by LY294002, but not by U0126. Inhibitors of epidermal growth factor receptor (EGFR) (AG 1478), Ras and Raf, as well as antioxidants inhibited activation of ERK and Akt, while the Src inhibitor PP2 had no effect. PI3K/Akt activation was shown to be associated with up-regulation of X chromosome-linked inhibitor of apoptosis (XIAP), but not survivin. Reoxygenation following 4-h hypoxia-stimulated cell proliferation, which was dependent on ERK and Akt activation and was also inhibited by antioxidants and AG 1478. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt/XIAP survival signaling pathways through the reactive oxygen species-dependent EGFR/Ras/Raf cascade. Activation of these kinases may be involved in the repair process during ischemia/reperfusion.  相似文献   

20.
Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes survival in cells exposed to oxidative stress by inducing the activity of anti-inflammatory mediators and suppressing the expression of pro-inflammatory genes. Though retinal pigment epithelial (RPE) cells naturally produce NPD1 from DHA, investigating the mechanisms through which exogenous NPD1 induces cell survival is essential to assess mechanisms of actions and the potential of this lipid mediator for treatment of retinal degenerative diseases. The PI3K/Akt and mTOR/p70S6K pathways are responsible for supporting cell survival upon exposure to oxidative stress. In human ARPE-19 cells pretreated with NPD1 then exposed to varying concentrations of oxidative stress or repeated exposures to oxidative stress, Akt, mTOR, and p70S6K were phosphorylated to a greater extent and for a greater duration than cells not pretreated with NPD1. In addition to increased phosphorylation, a subsequent decreased rate of apoptosis was observed upon NPD1 treatment. Thus NPD1 bioactivity in RPE cells enhances activation of these pathways and promotes cell integrity and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号