首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impaired bone healing can have devastating consequences for the patient. Clinically relevant animal models are necessary to understand the pathology of impaired bone healing. In this study, two impaired healing models, a hypertrophic and an atrophic non-union, were compared to physiological bone healing in rats. The aim was to provide detailed information about differences in gene expression, vascularization and histology during the healing process. The change from a closed fracture (healing control group) to an open osteotomy (hypertrophy group) led to prolonged healing with reduced mineralized bridging after 42 days. RT-PCR data revealed higher gene expression of most tested osteogenic and angiogenic factors in the hypertrophy group at day 14. After 42 days a significant reduction of gene expression was seen for Bmp4 and Bambi in this group. The inhibition of angiogenesis by Fumagillin (atrophy group) decreased the formation of new blood vessels and led to a non-healing situation with diminished chondrogenesis. RT-PCR results showed an attempt towards overcoming the early perturbance by significant up regulation of the angiogenic regulators Vegfa, Angiopoietin 2 and Fgf1 at day 7 and a further continuous increase of Fgf1, -2 and Angiopoietin 2 over time. However µCT angiograms showed incomplete recovery after 42 days. Furthermore, lower expression values were detected for the Bmps at day 14 and 21. The Bmp antagonists Dan and Twsg1 tended to be higher expressed in the atrophy group at day 42. In conclusion, the investigated animal models are suitable models to mimic human fracture healing complications and can be used for longitudinal studies. Analyzing osteogenic and angiogenic signaling patterns, clear changes in expression were identified between these three healing models, revealing the importance of a coordinated interplay of different factors to allow successful bone healing.  相似文献   

2.
Sufficient angiogenesis is crucial during tissue regeneration and therefore also pivotal in bone defect healing. Recently, peripheral blood derived progenitor cells have been identified to have in addition to their angiogenic potential also osteogenic characteristics, leading to the hypothesis that bone regeneration could be stimulated by local administration of these cells. The aim of this study was to evaluate the angiogenic potential of locally administered progenitor cells to improve bone defect healing. Cells were separated from the peripheral blood of donor animals using the markers CD34 and CD133. Results of the in vitro experiments confirmed high angiogenic potential in the CD133(+) cell group. CD34(+) and CD133(+) cells were tested in an in vivo rat femoral defect model of delayed healing for their positive effect on the healing outcome. An increased callus formation and higher bone mineral density of callus tissue was found after the CD133(+) cell treatment compared to the group treated with CD34(+) cells and the control group without cells. Histological findings confirmed an increase in vessel formation and mineralization at day 42 in the osteotomy gap after CD133(+) cell transplantation. The higher angiogenic potential of CD133(+) cells from the in vitro experients therefore correlates with the in vivo data. This study demonstrates the suitability of angiogenic precursors to further bone healing and gives an indication that peripheral blood is a promising source for progenitor cells circumventing the problems associated with bone marrow extraction.  相似文献   

3.
This study aimed to mechanically produce a standardized ovine model for a critically delayed bone union. A tibial osteotomy was stabilized with either a rigid (group I) or mechanically critical (group II) external fixator in sheep. Interfragmentary movements and ground reaction forces were monitored throughout the healing period of 9 weeks. After sacrifice at 6 weeks, 9 weeks and 6 months, radiographs were taken and the tibiae were examined mechanically. Interfragmentary movements were considerably larger in group II throughout the healing period. Unlike group I, the operated limb in group II did not return to full weight bearing during the treatment period. Radiographic and mechanical observations showed significantly inferior bone healing in group II at 6 and 9 weeks compared to group I. After 6 months, five sheep treated with the critical fixator showed radiological bridging of the osteotomy, but the biomechanical strength of the repair was still inferior to group I at 9 weeks. The remaining three animals had even developed a hypertrophic non-union. In this study, mechanical instability was employed to induce a critically delayed healing model in sheep. In some cases, this approach even led to the development of a hypertrophic non-union. The mechanical induction of critical bone healing using an external fixation device is a reasonable attempt to investigate the patho-physiological healing cascade without suffering from any biological intervention. Therefore, the presented ovine model provides the basis for a comparative evaluation of mechanisms controlling delayed and standard bone healing.  相似文献   

4.
Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-κB and TNF-α expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results suggest that genistein supplementation reduces oxidative stress by increasing antioxidant capacity and modulating proinflammatory cytokine expression during the early stage of wound healing.  相似文献   

5.
Poorly healing mandibular fractures and osteotomies can be troublesome complications of craniomaxillofacial trauma and reconstructive surgery. Gene therapy may offer ways of enhancing bone formation by altering the expression of desired growth factors and extracellular matrix molecules. The elucidation of suitable candidate genes for therapeutic intervention necessitates investigation of the endogenously expressed patterns of growth factors during normal (i.e., successful) fracture repair. Transforming growth factor beta1 (TGF-beta1), its receptor (Tbeta-RII), and the extracellular matrix proteins osteocalcin and type I collagen are thought to be important in long-bone (endochondral) formation, fracture healing, and osteoblast proliferation. However, the spatial and temporal expression patterns of these molecules during membranous bone repair remain unknown. In this study, 24 adult rats underwent mandibular osteotomy with rigid external fixation. In addition, four identically treated rats that underwent sham operation (i.e., no osteotomy) were used as controls. Four experimental animals were then killed at each time point (3, 5, 7, 9, 23, and 37 days after the procedure) to examine gene expression of TGF-beta1 and Tbeta-RII, osteocalcin, and type I collagen. Northern blot analysis was used to compare gene expression of these molecules in experimental animals with that in control animals (i.e., nonosteotomized; n = 4). In addition, TGF-beta1 and T-RII proteins were immunolocalized in an additional group of nine animals killed on postoperative days 3, 7, and 37. The results of Northern blot analysis demonstrated a moderate increase (1.7 times) in TGF-beta1 expression 7 days postoperatively; TGF-beta1 expression returned thereafter to near baseline levels. Tbeta-RII mRNA expression was downregulated shortly after osteotomy but then increased, reaching a peak of 1.8 times the baseline level on postoperative day 9. Osteocalcin mRNA expression was dramatically downregulated shortly after osteotomy and remained low during the early phases of fracture repair. Osteocalcin expression trended slowly upward as healing continued, reaching peak expression by day 37 (1.7 times the control level). In contrast, collagen type IalphaI mRNA expression was acutely downregulated shortly after osteotomy, peaked on postoperative days 5, and then decreased at later time points. Histologic samples from animals killed 3 days after osteotomy demonstrated TGF-beta1 protein localized to inflammatory cells and extracellular matrix within the fracture gap, periosteum, and peripheral soft tissues. On postoperative day 7, TGF-beta1 staining was predominantly localized to the osteotomized bone edges, periosteum, surrounding soft tissues, and residual inflammatory cells. By postoperative day 37, complete bony healing was observed, and TGF-beta1 staining was localized to the newly formed bone matrix and areas of remodeling. On postoperative day 3, Tbeta-RII immunostaining localized to inflammatory cells within the fracture gap, periosteal cells, and surrounding soft tissues. By day 7, Tbeta-RII staining localized to osteoblasts of the fracture gap but was most intense within osteoblasts and mesenchymal cells of the osteotomized bone edges. On postoperative day 37, Tbeta-RII protein was seen in osteocytes, osteoblasts, and the newly formed periosteum in the remodeling bone. These observations agree with those of previous in vivo studies of endochondral bone formation, growth, and healing. In addition, these results implicate TGF-beta1 biological activity in the regulation of osteoblast migration, differentiation, and proliferation during mandibular fracture repair. Furthermore, comparison of these data with gene expression during mandibular distraction osteogenesis may provide useful insights into the treatment of poorly healing fractures because distraction osteogenesis has been shown to be effective in the management of these difficult clinical cases.  相似文献   

6.
《Cytotherapy》2020,22(10):543-551
Background aimsWhen cells are exposed to stresses such as mechanical stimuli, they release growth factors and adapt to the surrounding environment H ere, we demonstrated that mechanical stimulation during culture affects the production of osteogenic and angiogenic factors.MethodsHuman bone marrow derived mesenchymal stromal cells (hMSCs) and human periodontal ligament fibroblasts (HPLFs ) were cultured under cyclic stretch stimulation for 24 h. Collected of the cells and conditioned media (CM), the gene and protein expression levels of osteogenic and angiogenic factors were evaluated. CM was also evaluated for angiogenic activity and calc ification ability. In in vivo study, CM was administered to a mouse calvarial defect model and histologically and radiologically evaluated.ResultsQuantitative real time polymerase chain reaction results showed that the expression of bone morphogenetic pro tein 2, 4 (BMP 2, 4), vascular endothelial growth factor A (VEGF A), and platelet derived growth factor AA (PDGF AA) was upregulated in the cyclic stretch stimulation group in comparison with the non stretch group in each cell type. Enzyme linked immunosor bent assay results revealed that the expression of BMP 2,4, VEGF A was upregulated in the cyclic stretch group in comparison with the non stretch group in each cell type. Only HPLFs showed significant difference in PDGF AA expression between the cyclic str etch and the non stretch group. Tube formation assay and Alizarin Red S staining results showed that angiogenic activity and calcification ability of CM was upregulated in the cyclic stretch stimulation group in comparison with the non stretch group in eac h cell type. CM was administered to the mouse calvarial defect model. Histological and radiological examination showed that the bone healing was promoted by CM from the cyclic stretch culture group. Immunohistological staining revealed that CM from cyclic stretch group have greater angiogenic effect than CM from the non stretch group.ConclusionsThese results indicate that osteogenesis was promoted by CM obtained under cyclic stretch stimulation through the increase of angiogenesis in the mouse calvarial defect model.  相似文献   

7.
A quantitative biomechanical model describes the tissue transformation during healing of a transverse osteotomy of a sheep metatarsal. The model predicts bridging of the bone ends through cartilage, followed by the growth of a callus cuff, and finally, the resorption of callus after ossification of the interfragmentary gap. We suggest bone density or the modulus of elasticity do not sufficiently characterize healing tissue for predictive purposes. In addition to the stimulus reflected by strain energy density we introduce a new osteogenic factor based upon stress gradients and which predicts areas of a high osteogenic capacity. Our model distinguishes three basic types of tissue, namely bone, cartilage and fibrous tissue. A fuzzy controller is proposed to model the tissue reaction. A set of fuzzy rules derived from medical knowledge has been implemented to describe tissue transformation such as intramembraneous or chondral ossification, atrophy or destruction. Fuzzy logic is able to model tissue transformation processes within the numerical simulation of remodeling processes. This approach improves the simulation tools and affords the potential to optimize planning of animal experiments and conduct parametric studies.  相似文献   

8.
Fracture healing is a specialized post-natal repair process that recapitulates aspects of embryological skeletal development. While many of the molecular mechanisms that control cellular differentiation and growth during embryogenesis recur during fracture healing, these processes take place in a post-natal environment that is unique and distinct from those which exist during embryogenesis. This Prospect Article will highlight a number of central biological processes that are believed to be crucial in the embryonic differentiation and growth of skeletal tissues and review the functional role of these processes during fracture healing. Specific aspects of fracture healing that will be considered in relation to embryological development are: (1) the anatomic structure of the fracture callus as it evolves during healing; (2) the origins of stem cells and morphogenetic signals that facilitate the repair process; (3) the role of the biomechanical environment in controlling cellular differentiation during repair; (4) the role of three key groups of soluble factors, pro-inflammatory cytokines, the TGF-beta superfamily, and angiogenic factors, during repair; and (5) the relationship of the genetic components that control bone mass and remodeling to the mechanisms that control skeletal tissue repair in response to fracture.  相似文献   

9.
Early signals for fracture healing   总被引:3,自引:0,他引:3  
  相似文献   

10.
Recently, we demonstrated that a specific combination of growth factors enhances the survival, adhesion and angiogenic potential of mononuclear cells (MNCs). In this study, we sought to investigate the changes of the angiogenic potential of MNCs after short‐time priming with a specific combination of growth factors. MNCs were isolated using density gradient centrifugation and incubated with a priming cocktail containing epidermal growth factor (EGF), insulin‐like growth factor (IGF)‐1, fibroblast growth factor (FGF)‐2, FMS‐like tyrosine kinase (Flt)‐3L , Angiopoietin (Ang)‐1, granulocyte chemotactic protein (GCP)‐2 and thrombopoietin (TPO) (all 400 ng/ml) for 15, 30 and 60 min. Wounds in nonobese diabetic‐severe combined immune deficiency (NOD‐SCID) mice were created by skin excision followed by cell transplantation. We performed a qRT‐PCR analysis on the growth factor–primed cells. The angiogenic factors vascular endothelial growth factor (VEGF)‐A, FGF‐2, hepatocyte growth factor (HGF), platelet‐derived growth factor (PDGF) and interleukin (IL)‐8 and the anti‐apoptotic factors IGF‐1 and transforming growth factor‐β1 were significantly elevated in the MNCs primed for 30 min. (T30) compared with the non‐primed MNCs (T0). The scratch wound assay revealed that T30‐ conditioned media (CM) significantly increased the rate of fibroblast‐mediated wound closure compared with the rates from T0‐CM and human umbilical vein endothelial cells (HUVEC)‐CM at 20 hrs. In vivo wound healing results revealed that the T30‐treated wounds demonstrated accelerated wound healing at days 7 and 14 compared with those treated with T0. The histological analyses demonstrated that the number of engrafted cells and transdifferentiated keratinocytes in the wounds were significantly higher in the T30‐transplanted group than in the T0‐transplanted group. In conclusion, this study suggests that short‐term priming of MNCs with growth factors might be alternative therapeutic option for cell‐based therapies.  相似文献   

11.
Study of thermal effects of ultrasound stimulation on fracture healing   总被引:5,自引:0,他引:5  
Low intensity ultrasound stimulation has been used as a strategy to promote fracture healing. This study investigated the mechanism of ultrasound stimulation in enhancing fracture healing. Forty-five adult New Zealand White rabbits were divided into control, microwave treated, and ultrasound stimulation groups. After anesthesia, transverse osteotomy was created at midportion of the fibula bone. Intravital staining followed by fluorescence microscopic examination of new bone formation in the osteotomy site and biomechanical tests on torsional stiffness of the osteotomy site were performed. The difference between each examination was evaluated and analyzed. After ultrasound stimulation, new bone formation in the osteotomy site of the stimulated limb was 23.1-35.8% faster than that of the sham treated limb; the torsional stiffness of the stimulated limb was 44.4-80.0% higher than that of the sham treated limb. In the group of microwave hyperthermia treatment, the new bone formation was higher than that of the sham treated limb, but the difference was not statistically significant. The difference in torsional stiffness between the microwave hyperthermia treated limbs and the sham treated limb was not quite statistically significant. We demonstrated that low intensity ultrasound stimulation could increase the new bone formation and torsional stiffness. These effects probably are not mediated via hyperthermia.  相似文献   

12.
The healing process for bone fractures is sensitive to mechanical stability and blood supply at the fracture site. Most currently available mechanobiological algorithms of bone healing are based solely on mechanical stimuli, while the explicit analysis of revascularization and its influences on the healing process have not been thoroughly investigated in the literature. In this paper, revascularization was described by two separate processes: angiogenesis and nutrition supply. The mathematical models for angiogenesis and nutrition supply have been proposed and integrated into an existing fuzzy algorithm of fracture healing. The computational algorithm of fracture healing, consisting of stress analysis, analyses of angiogenesis and nutrient supply, and tissue differentiation, has been tested on and compared with animal experimental results published previously. The simulation results showed that, for a small and medium-sized fracture gap, the nutrient supply is sufficient for bone healing, for a large fracture gap, non-union may be induced either by deficient nutrient supply or inadequate mechanical conditions. The comparisons with experimental results demonstrated that the improved computational algorithm is able to simulate a broad spectrum of fracture healing cases and to predict and explain delayed unions and non-union induced by large gap sizes and different mechanical conditions. The new algorithm will allow the simulation of more realistic clinical fracture healing cases with various fracture gaps and geometries and may be helpful to optimise implants and methods for fracture fixation.  相似文献   

13.
The cross-talk between cells is very critical for moving forward fracture healing in an orderly manner. Connexin (Cx) 43-formed gap junctions and hemichannels mediate the communication between adjacent cells and cells and extracellular environment. Loss of Cx43 in osteoblasts/osteocytes results in delayed fracture healing. For investigating the role of two channels in osteocytes in bone repair, two transgenic mouse models with Cx43 dominant negative mutants driven by a 10 kb-DMP1 promoter were generated: R76W (gap junctions are blocked, whereas hemichannels are promoted) and Δ130–136 (both gap junctions and hemichannels are blocked). R76W mice (promotion of hemichannels) showed a significant increase of new bone formation, whereas delayed osteoclastogenesis and healing was observed in Δ130–136 (impairment of gap junctions), but not in R76W mice (hemichannel promotion may recover the delay). These results suggest that gap junctions and hemichannels play some similar and cooperative roles in bone repair.  相似文献   

14.
Closed bone fractures, and torn muscles and tendons are "internal wounds". What kind of reaction do they evoke in the local and systemic immune system? Cellular debris of damaged tissue and extravasated blood cells are removed by scavenger cells. They are transported via lymphatics to the lymph nodes. There elimination of self antigens takes place. Clinically, no enlargement of lymph nodes is observed after closed fractures and soft tissue damage. The question arises whether there is really no enlargement of regional lymph nodes, in other words, no reaction to damaged cell antigens. This question was studied by using lymphoscintigraphy to visualize lymphatics and lymph nodes draining the site of closed bone fracture. The lymphoscintigraphic pictures of two groups of patients, those with a rapid noncomplicated healing of leg fractures, and those with protracted healing and undergoing surgical reconstructions, were evaluated. The surface area of lymphatic pathways and inguinal lymph nodes on the injured and contralateral normal limb were measured. Enlarged superficial lymphatics and inguinal lymph nodes were found in limbs with healed bone fractures, and decreased inguinal lymph nodes and visualization of deep lymphatics and popliteal nodes in the majority of patients with nonhealing fractures. There was a lack of correlation between age of patients, duration of healing, and surgical interventions and the lymphoscintigraphic changes. These findings suggest that the fracture gap tissue is a dominant source of signals to the lymph nodes, releasing cellular and humoral regulatory factors. Taken together, there is a strong immune reaction of lymph node to the fracture, although it cannot be recognized clinically.  相似文献   

15.
Circulation-derived cells play a crucial role in the healing processes of tissue. In early phases of tendon healing processes, circulation-derived cells temporarily exist in the wounded area to initiate the healing process and decrease in number with time. We assumed that a delay of time-dependent decrease in circulation-derived cells could improve the healing of tendons. In this study, we injected platelet-rich plasma (PRP) containing various kinds of growth factors into the wounded area of the patellar tendon, and compared the effects on activation of circulation-derived cells and enhancement of tendon healing with a control group (no PRP injection). To follow the circulation-derived cells, we used a green fluorescent protein (GFP) chimeric rat expressing GFP in the circulating cells and bone marrow cells. In the PRP group, the numbers of GFP-positive cells and heat-shock protein (HSP47; collagen-specific molecular chaperone)-positive cells were significantly higher than in the control group at 3 and 7 days after injury. At the same time, the immunoreactivity for types I and III collagen was higher in the PRP group than in the control group at early phase of tendon healing. These findings suggest that locally injected PRP is useful as an activator of circulation-derived cells for enhancement of the initial tendon healing process.  相似文献   

16.
Mechanical conditions have a significant influence on the biological processes of bone healing. Small animal models that allow controlling the mechanical environment of fracture and bone defect healing are needed. The aim of this study was to develop a new animal model that allows to reliably control the mechanical environment in fracture and bone defect healing in rats using different implant materials. An external fixator was designed and mounted in vitro to rat femurs using four Kirschner-wires (titanium (T) or steel (S)) of 1.2mm diameter. The specimens were distracted to a gap of 1.5mm. Axial and torsional stiffness of the device was tested increasing the offset (distance between bone and fixator crossbar) from 5 to 15mm. In vivo performance (well-being, infection, breaking of wires and bone healing) was evaluated in four groups of 24 Sprague-Dawley rats varying in offset (7.5 and 15mm) and implant material (S/T) over 6 weeks. Torsional and axial stiffness were higher in steel compared to titanium setups. A decrease in all configurations was observed by increasing the offset. The offset 7.5mm showed a significantly higher torsional (S: p<0.01, T: p<0.001) and axial in vitro stiffness (S: p<0.001, T: p<0.001) compared to 15mm offset of the fixator. Although in vitro designed to be different in mechanical stiffness, no difference was found between the groups regarding complication rate. The overall-complication rate was 5.2%. In conclusion, we were able to establish a small animal model for bone defect healing which allows modeling the mechanical conditions at the defect site in a defined manner.  相似文献   

17.
The use of stem or progenitor cells from bone marrow, or peripheral or umbilical cord blood is becoming more common for treatment of diabetic foot problems. These cells promote neovascularization by angiogenic factors and they promote epithelium formation by stimulating cell replication and migration under certain pathological conditions. We investigated the role of CD34 + stem cells from human umbilical cord blood in wound healing using a rat model. Rats were randomly divided into a control group and two groups with diabetes induced by a single dose of 55 mg/kg intraperitoneal streptozocin. Scarred areas 5 mm in diameter were created on the feet of all rats. The diabetic rats constituted the diabetes control group and a diabetes + stem cell group with local injection into the wound site of 0.5 × 106 CD34 + stem cells from human umbilical cord blood. The newly formed skin in the foot wounds following CD34 + stem cell treatment showed significantly improvement by immunohistochemistry and TUNEL staining, and were closer to the wound healing of the control group than the untreated diabetic animals. The increase in FGF expression that accompanied the local injection of CD34 + stem cells indicates that FGF stimulation helped prevent apoptosis. Our findings suggest a promising new treatment approach to diabetic wound healing.  相似文献   

18.
Adipose-derived mesenchymal stem cells(ADSCs) are a treatment cell source for patients with chronic liver injury. ADSCs are characterized by being harvested from the patient's own subcutaneous adipose tissue, a high cell yield(i.e., reduced immune rejection response), accumulation at a disease nidus, suppression of excessive immune response, production of various growth factors and cytokines, angiogenic effects, antiapoptotic effects, and control of immune cells via cellcell interaction. We previously showed that conditioned medium of ADSCs promoted hepatocyte proliferation and improved the liver function in a mouse model of acute liver failure. Furthermore, as found by many other groups, the administration of ADSCs improved liver tissue fibrosis in a mouse model of liver cirrhosis. A comprehensive protein expression analysis by liquid chromatography with tandem mass spectrometry showed that the various cytokines and chemokines produced by ADSCs promote the healing of liver disease. In this review, we examine the ability of expressed protein components of ADSCs to promote healing in cell therapy for liver disease. Previous studies demonstrated that ADSCs are a treatment cell source for patients with chronic liver injury. This review describes the various cytokines and chemokines produced by ADSCs that promote the healing of liver disease.  相似文献   

19.
Introduction:The combination of traumatic brain injury (TBI) and long-bone fractures has previously been reported to lead to exuberant callus formation. The aim of this experimental study was to radiographically and biomechanically study the effect of TBI on bone healing in a mouse model.Materials and methods:138 female C57/Black6N mice were assigned to four groups (fracture (Fx) / TBI / combined trauma (Fx/TBI) / controls). Femoral osteotomy and TBI served as variables: osteotomies were stabilized with external fixators, TBI was induced with controlled cortical impact injury. During an observation period of four weeks, in vivo micro-CT scans of femora were performed on a weekly basis. Biomechanical testing of femora was performed ex vivo.Results:The combined-trauma group showed increased bone volume, higher mineral density, and a higher rate of gap bridging compared to the fracture group. The combined-trauma group showed increased torsional strength at four weeks.Discussion:TBI results in an increased formation of callus and mineral density compared to normal bone healing in mice. This fact combined with a tendency towards accelerated gap bridging leads to increased torsional strength. The present study underscores the empirical clinical evidence that TBI stimulates bone healing. Identification of underlying pathways could lead to new strategies for bone-stimulating approaches in fracture care.  相似文献   

20.
The effect of ifosfamide on bone healing was tested in a controlled experiment of fibular osteotomy in immature rabbits. Standardized shaft osteotomy was implemented in 10 experimental subjects (group 2) and 10 controls (group 1). Experimental animals received a 50 mg/kg ifosfamide dose by intraperitoneal injection on the fourth post-operative day, and for five days thereafter, while controls received injections of distilled water. After five weeks, all animals were submitted to pharmacological euthanasia and the resulting bone callus samples were studied with histomorphometry, using hematoxylin-eosin stain. Group 2 presented smaller bone volume (69.03% versus 84.98%), larger fibrosis volume (30.96% versus 15.02%), and larger resorption surface (22.02% versus 16.17%) than group 1 (all p< or = 0.05). We conclude that ifosfamide is able to alter the physiological bone healing process by producing a less mature callus (characterized by a smaller quantity of bone tissue), a larger quantity of fibrous tissue, and a smaller resorption surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号