首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long terminal repeats (LTRs) that flank the retroviral DNA genome play a distinct role in the integration process by acting as specific substrates for the integrase (IN). The role of LTR sequences in providing substrate recognition and specificity to integration reactions was investigated for INs from human immunodeficiency virus type 1 (HIV-1), Moloney murine leukemia virus (M-MuLV), human T-cell leukemia virus type 1 (HTLV-1), and human T-cell leukemia virus type 2 (HTLV-2). Overall, these INs required specific LTR sequences for optimal catalysis of 3'-processing reactions, as opposed to strand transfer and disintegration reactions. It is of particular note that in strand transfer reactions the sites of integration were similar among the four INs. In the 3'-processing reaction, sequence specificity for each IN was traced to the three nucleotides proximal to the conserved CA. Reactions catalyzed by M-MuLV IN were additionally influenced by upstream regions. The nucleotide requirements for optimal catalysis differed for each IN. HIV-1 IN showed a broad range of substrate specificities, while HTLV-1 IN and HTLV-2 IN had more defined sequence requirements. M-MuLV IN exhibited greater activity with the heterologous LTR substrates than with its own wild-type substrate. This finding was further substantiated by the high levels of activity catalyzed by the IN on modified M-MuLV LTRs. This work suggests that unlike the other INs examined, M-MuLV IN has evolved with an IN-LTR interaction that is suboptimal.  相似文献   

2.
We have examined the activities of HIV-1 integrase on substrates containing mismatches, composed of deoxyuridine at different positions in either the processed or nonprocessed strand of viral DNA, within and near the conserved CA dinucleotide of the U5 end of the HIV-1 LTR. Substitution in the processed strand of either the C or A of the CA dinucleotide or of the G 5' to the CA reduced strand transfer six-, three- and seven-fold respectively. 3'-processing was also reduced by substitution at the GC but not at the A. Substitution in the nonprocessed strand of the G nucleotide at the processing site abolished strand transfer while substitution of the T had no effect. DNA binding of HIV-1 integrase was not affected by deoxyuridine substitutions. Deoxyuridine substitution outside the trinucleotide remained compatible with enzyme activity. Enzymatically generated abasic sites were created at each mismatch to determine the effect of a missing base on integrase activity. Consistent with the deoxyuridine mismatch observations, 3'-processing and strand transfer were abolished when the abasic site was substituted for either of the nucleotides of the GCA trinucleotide. Integrase was, however, able to tolerate mismatches within this trinucleotide during the disintegration reaction. Taken together, these results suggest that base-mismatched or base-deleted substrates, which can be created by the proofreading-deficient HIV-1 RT, can be tolerated by HIV-1 integrase when located outside of the GCA trinucleotide at the U5 end of the LTR.  相似文献   

3.
The 3'-processing of the extremities of viral DNA is the first of two reactions catalyzed by HIV-1 integrase (IN). High order IN multimers (tetramers) are required for complete integration, but it remains unclear which oligomer is responsible for the 3'-processing reaction. Moreover, IN tends to aggregate, and it is unknown whether the polymerization or aggregation of this enzyme on DNA is detrimental or beneficial for activity. We have developed a fluorescence assay based on anisotropy for monitoring release of the terminal dinucleotide product in real-time. Because the initial anisotropy value obtained after DNA binding and before catalysis depends on the fractional saturation of DNA sites and the size of IN.DNA complexes, this approach can be used to study the relationship between activity and binding/multimerization parameters in the same assay. By increasing the IN:DNA ratio, we found that the anisotropy increased but the 3'-processing activity displayed a characteristic bell-shaped behavior. The anisotropy values obtained in the first phase were predictive of subsequent activity and accounted for the number of complexes. Interestingly, activity peaked and then decreased in the second phase, whereas anisotropy continued to increase. Time-resolved fluorescence anisotropy studies showed that the most competent form for catalysis corresponds to a dimer bound to one viral DNA end, whereas higher order complexes such as aggregates predominate during the second phase when activity drops off. We conclude that a single IN dimer at each extremity of viral DNA molecules is required for 3'-processing, with a dimer of dimers responsible for the subsequent full integration.  相似文献   

4.
Retroviral integrases (INs) interact with termini of retroviral DNA in the conserved 5'-C(A/G)T. For most integrases, modifications of critical moieties in the major and minor grooves of these sequences decrease 3'-processing. However, for human immunodeficiency virus type-2 (HTLV-2) IN, the replacement of the guanine with 6-methylguanine or hypoxanthine not only reduced 3'-processing, but also promoted cleavage at a second site. This novel cleavage activity required an upstream ACA, unique to the HTLV-2 U5 end. 3'-Processing assays with additional isosteric modifications at Gua and filter binding experiments revealed that the mechanism of the second site cleavage differed among the major groove, minor groove, and mismatch modifications. Importantly, the decrease in 3'-processing activity noted with the minor groove and mismatch modifications were attributed to a decrease in binding. Major groove modifications, however, decreased the level of 3'-processing, but did not affect binding. This suggests that integrase binds the viral end through the minor groove, but relies on major groove contacts for 3'-processing. Several modifications were also examined in strand transfer and disintegration substrates. HTLV-2 IN showed reduced activity with strand transfer and disintegration substrates containing major groove, but not minor groove modifications. This suggests major groove interactions at guanine also provide an important role in these reactions.  相似文献   

5.
Integration of retroviral DNA into the host cell genome requires the interaction of retroviral integrase (IN) protein with the outer ends of both viral long terminal repeats (LTRs) to remove two nucleotides from the 3' ends (3' processing) and to join the 3' ends to newly created 5' ends in target DNA (strand transfer). We have purified the IN protein of human immunodeficiency virus type 1 (HIV-1) after production in Saccharomyces cerevisiae and found it to have many of the properties described for retroviral IN proteins. The protein performs both 3' processing and strand transfer reactions by using HIV-1 or HIV-2 attachment (att) site oligonucleotides. A highly conserved CA dinucleotide adjacent to the 3' processing site of HIV-1 is important for both the 3' processing and strand transfer reactions; however, it is not sufficient for full IN activity, since alteration of nucleotide sequences internal to the HIV-1 U5 CA also impairs IN function, and Moloney murine leukemia virus att site oligonucleotides are poor substrates for HIV-1 IN. When HIV-1 att sequences are positioned internally in an LTR-LTR circle junction substrate, HIV-1 IN fails to cleave the substrate preferentially at positions coinciding with correct 3' processing, implying a requirement for positioning att sites near DNA ends. The 2 bp normally located beyond the 3' CA in linear DNA are not essential for in vitro integration, since mutant oligonucleotides with single-stranded 3' or 5' extensions or with no residues beyond the CA dinucleotide are efficiently used. Selection of target sites is nonrandom when att site oligonucleotides are joined to each other in vitro. We modified an in vitro assay to distinguish oligonucleotides serving as the substrate for 3' processing and as the target for strand transfer. The modified assay demonstrates that nonrandom usage of target sites is dependent on the target oligonucleotide sequence and independent of the oligonucleotide used as the substrate for 3' processing.  相似文献   

6.
The disintegration activity of Moloney murine leukemia virus (M-MuLV) integrase (IN) was investigated through structural and sequence modifications of a Y substrate that resembles an integration intermediate. The Y substrates, constructed from individual oligonucleotides, contain a single viral long terminal repeat (LTR) joined to a nicked target DNA. Truncation of the double-stranded LTR sequences distal to the conserved 5'-CA-3' dinucleotide progressively diminished disintegration activity. M-MuLV IN was also able to catalyze disintegration of a heterologous double-stranded LTR sequence. Significantly, the activity of M-MuLV IN on single-stranded LTR Y substrates was more dependent on the sequence and length of the LTR strand than that reported for human immunodeficiency virus type 1 (HIV-1) IN. Modifications introduced at the Y-substrate junction demonstrated that the 3'-hydroxyl group at the terminus of the target strand was necessary for efficient joining of the target DNA strands. The presence of a 2'-hydroxyl group at the 3' end of the target strand, as well as a single-nucleotide gap at the LTR-target junction, reduced disintegration activity. The absence of hydroxyl groups on the terminal nucleotide abolished joining of the target strands. The results presented here suggest that M-MuLV IN disintegration activity is dependent on substantially different LTR sequence requirements than those reported for HIV-1 IN and may be mediated primarily through a structural recognition event.  相似文献   

7.
Retroviral integrase (IN) is responsible for two consecutive reactions, which lead to insertion of a viral DNA copy into a host cell chromosome. Initially, the enzyme removes di- or trinucleotides from viral DNA ends to expose 3'-hydroxyls attached to the invariant CA dinucleotides (3'-processing reaction). Second, it inserts the processed 3'-viral DNA ends into host chromosomal DNA (strand transfer). Herein, we report a crystal structure of prototype foamy virus IN bound to viral DNA prior to 3'-processing. Furthermore, taking advantage of its dependence on divalent metal ion cofactors, we were able to freeze trap the viral enzyme in its ground states containing all the components necessary for 3'-processing or strand transfer. Our results shed light on the mechanics of retroviral DNA integration and explain why HIV IN strand transfer inhibitors are ineffective against the 3'-processing step of integration. The ground state structures moreover highlight a striking substrate mimicry utilized by the inhibitors in their binding to the IN active site and suggest ways to improve upon this clinically relevant class of small molecules.  相似文献   

8.
A Mazumder  M Gupta    Y Pommier 《Nucleic acids research》1994,22(21):4441-4448
We present evidence suggesting that the 3'-processing activity of HIV-1 integrase is dramatically affected by electrostatic and/or steric perturbations 3' to the conserved CA dinucleotide. When the phosphodiester bond 3' to the scissile phosphodiester is replaced by a methylphosphonodiester linkage, 3'-processing decreases by two orders of magnitude. This block of cleavage can be somewhat overcome by increasing the pH of the reaction. Labeling of the substrates at the 3'-end revealed blockage of water and glycerol, but stimulation of the viral DNA 3'-hydroxyl, acting as the nucleophile with the methylphosphonodiester substrate. Interestingly, a circular trinucleotide was formed using the phosphodiester and methylphosphonodiester substrates when the terminal nucleotide was 3'-deoxyadenosine but not 2'-deoxyadenosine. Mutagenesis of the enzyme active site has previously been shown to alter the choice of nucleophile in the 3'-processing reaction. Taken together, the results in this study suggest that 'mutagenesis' of the DNA backbone can also alter the choice of nucleophile.  相似文献   

9.
HIV-1 integrase (IN) catalyzes the integration of the proviral DNA into the cellular genome. The catalytic triad D64, D116 and E152 of HIV-1 IN is involved in the reaction mechanism and the DNA binding. Since the integration and substrate binding processes are not yet exactly known, we studied the role of amino acids localized in the catalytic site. We focused our interest on the V151E152S153 region. We generated random mutations inside this domain and selected mutated active INs by using the IN-induced yeast lethality assay. In vitro analysis of the selected enzymes showed that the IN nuclease activities (specific 3′-processing and non-sequence-specific endonuclease), the integration and disintegration reactions and the binding of the various DNA substrates were affected differently. Our results support the hypothesis that the three reactions may involve different DNA binding sites, enzyme conformations or mechanisms. We also show that the V151E152S153 region involvement in the integration reaction is more important than for the 3′-processing activity and can be involved in the recognition of DNA. The IN mutants may lead to the development of new tools for studying the integration reaction, and could serve as the basis for the discovery of integration-specific inhibitors.  相似文献   

10.
Integration catalyzed by integrase (IN) is a key process in the retrovirus life cycle. Many biochemical or structural human immunodeficiency virus, type 1 (HIV-1) IN studies have been severely impeded by its propensity to aggregate. We characterized a retroviral IN (primate foamy virus (PFV-1)) that displays a solubility profile different from that of HIV-1 IN. Using various techniques, including fluorescence correlation spectroscopy, time-resolved fluorescence anisotropy, and size exclusion chromatography, we identified a monomer-dimer equilibrium for the protein alone, with a half-transition concentration of 20-30 mum. We performed specific enzymatic labeling of PFV-1 IN and measured the fluorescence resonance energy transfer between carboxytetramethylrhodamine-labeled IN and fluorescein-labeled DNA substrates. FRET and fluorescence anisotropy highlight the preferential binding of PFV-1 IN to the 3'-end processing site. Sequence-specific DNA binding was not observed with HIV-1 IN, suggesting that the intrinsic ability of retroviral INs to bind preferentially to the processing site is highly underestimated in the presence of aggregates. IN is in a dimeric state for 3'-processing on short DNA substrates, whereas IN polymerization, mediated by nonspecific contacts at internal DNA positions, occurs on longer DNAs. Additionally, aggregation, mediated by nonspecific IN-IN interactions, occurs preferentially with short DNAs at high IN/DNA ratios. The presence of either higher order complex is detrimental for specific activity. Ionic strength favors catalytically competent over higher order complexes by selectively disrupting nonspecific IN-IN interactions. This counteracting effect was not observed with polymerization. The synergic effect on the selection of specific/competent complexes, obtained by using short DNA substrates under high salt conditions, may have important implications for further structural studies in IN.DNA complexes.  相似文献   

11.
The integrase protein (IN) of human immunodeficiency virus type 1 removes two nucleotides from both 3' ends of the viral DNA (donor cleavage) and subsequently couples the newly generated 3' OH groups to phosphates in the target DNA (integration). The sequence requirements of IN for cleavage as well as for integration of viral DNA substrates have previously been studied by mutational analyses and by adduct interference assays. We extended these studies by analysis of heteroduplex oligonucleotide substrates and by missing-base analysis. We found for some base pairs that mutation of only one of the two bases and not the other affected IN activity. These base pairs center around the cleavage site. Besides donor cleavage and integration, IN can also perform "intermolecular disintegration," which has been described as the reversal of the integration reaction. We found that this reaction is independent of viral DNA sequences. In addition, the optimum spacing between the integration sites in intermolecular disintegration does not reflect the spacing found in vivo. These results indicate that this reaction is not the exact reversal of integration but rather is a sequence-independent phosphoryl transfer reaction between gapped DNA duplex molecules.  相似文献   

12.
Protein folding conditions were established for human immunodeficiency virus integrase (IN) obtained from purified bacterial inclusion bodies. IN was denatured by 6 M guanidine.HCl-5 mM dithiothreitol, purified by gel filtration, and precipitated by ammonium sulfate. The reversible solvation of precipitated IN by 6 M guanidine.HCl allowed for wide variation of protein concentration in the folding reaction. A 6-fold dilution of denatured IN by 1 M NaCl buffer followed by dialysis produced enzymatically active IN capable of 3' OH end processing, strand transfer, and disintegration using various human immunodeficiency virus-1 (HIV-1) long terminal repeat DNA substrates. The specific activities of folded IN preparations for these enzymatic reactions were comparable to those of soluble IN purified directly from bacteria. The subunit composition and enzymatic activities of IN were affected by the folding conditions. Standard folding conditions were defined in which monomers and protein aggregates sedimenting as dimers and tetramers wree produced. These protein aggregates were enzymatically active, whereas monomers had reduced strand transfer activity. Temperature modifications of the folding conditions permitted formation of mainly monomers. Upon assaying, these monomers were efficient for strand transfer and disintegration, but the oligomeric state of IN under the conditions of the assay is determinate. Our results suggest that monomers of the multidomain HIV-1 IN are folded correctly for various catalytic activities, but the conditions for specific oligomerization in the absence of catalytic activity are undefined.  相似文献   

13.
In vitro activities of purified visna virus integrase.   总被引:7,自引:5,他引:2       下载免费PDF全文
Although integration generally is considered a critical step in the retrovirus life cycle, it has been reported that visna virus, which causes degenerative neurologic disease in sheep, can productively infect sheep choroid plexus cells without detectable integration. To ascertain whether the integrase (IN) of visna virus is an inherently defective enzyme and to create tools for further study of integration of the phylogenetically related human immunodeficiency virus type 1 (HIV-1), we purified visna virus IN by using a bacterial expression system and applied various in vitro oligonucleotide-based assays to studying this protein. We found that visna virus IN demonstrates the full repertoire of in vitro functions characteristic of retroviral integrases. In particular, visna virus IN exhibits site-specific endonuclease activity following the invariant CA found two nucleotides from the 3' ends of viral DNA (processing activity), joins processed oligonucleotides to various sites on other oligonucleotides (strand transfer or integration activity), and reverses the integration reaction by resolving a complex that mimics one end of viral DNA integrated into host DNA (disintegration activity). In addition, although it has been reported that purified HIV-1 IN cannot specifically nick visna virus DNA ends, purified visna virus IN does specifically process and integrate HIV-1 DNA ends.  相似文献   

14.
Al-Mawsawi LQ  Sechi M  Neamati N 《FEBS letters》2007,581(6):1151-1156
HIV-1 integrase (IN) mediates the insertion of viral cDNA into the cell genome, a vital process for replication. This step is catalyzed by two separate DNA reaction events, termed 3'-processing and strand transfer. Here, we show that six inhibitors from five structurally different classes of compounds display a selectivity shift towards preferential strand transfer inhibition over the 3'-processing activity of IN when a single serine is substituted at position C130. Even though IN utilizes the same active site for both reactions, this finding suggests a distinct conformational dissimilarity in the mechanistic details of each IN catalytic event.  相似文献   

15.
The viral protein HIV-1 integrase is required for insertion of the viral genome into human chromosomes and for viral replication. Integration proceeds in two consecutive integrase-mediated reactions: 3'-processing and strand transfer. To investigate the DNA minor groove interactions of integrase relative to known sites of integrase action, we synthesized oligodeoxynucleotides containing single covalent adducts of known absolute configuration derived from trans-opening of benzo-[a]pyrene 7,8-diol 9,10-epoxide by the exocyclic 2-amino group of deoxyguanosine at specific positions in a duplex sequence corresponding to the terminus of the viral U5 DNA. Because the orientations of the hydrocarbon in the minor groove are known from NMR solution structures of duplex oligonucleotides containing these deoxyguanosine adducts, a detailed analysis of the relationship between the position of minor groove ligands and integrase interactions is possible. Adducts placed in the DNA minor groove two or three nucleotides from the 3'-processing site inhibited both 3'-processing and strand transfer. Inosine substitution showed that the guanine 2-amino group is required for efficient 3'-processing at one of these positions and for efficient strand transfer at the other. Mapping of the integration sites on both strands of the DNA substrates indicated that the adducts both inhibit strand transfer specifically at the minor groove bound sites and enhance integration at sites up to six nucleotides away from the adducts. These experiments demonstrate the importance of position-specific minor groove contacts for both the integrase-mediated 3'-processing and strand transfer reactions.  相似文献   

16.
The protein-DNA and protein-protein interactions important for function of the integrase (IN) protein of Moloney murine leukemia virus (M-MuLV) were investigated by using a coordinated-disintegration assay. A panel of M-MuLV IN mutants and substrate alterations highlighted distinctions between the intermolecular and intramolecular reactions of coordinated disintegration. Mispairing of the crossbone single-strand region and altered long terminal repeat (LTR) positioning affected the intermolecular, but not the intramolecular, reactions of coordinated disintegration. Partial components of the crossbone substrate were coordinated by M-MuLV IN, indicating a reliance on both LTR and target DNA determinants for substrate assembly. The intramolecular reaction was dependent on the presence of either the HHCC domain or a crossbone LTR 5' single-stranded tail. An M-MuLV IN mutant without the HHCC domain (Ndelta105) catalyzed reduced levels of double disintegration but not single disintegration. A separately purified HHCC domain protein (Cdelta232) stimulated double disintegration mediated by Ndelta105, suggesting a role of the N-terminal HHCC domain in stable IN-IN and IN-DNA interactions. Significantly, crossbone substrates lacking the LTR 5' tails were not recognized by the fingerless Ndelta105 protein. Collectively, these data suggest similar roles of the HHCC domain and 5' LTR tail in substrate recognition and modulation of IN activity.  相似文献   

17.
Integration of viral DNA into the host cell genome is a critical step in the life cycle of HIV. This essential reaction is catalyzed by integrase (IN) through two steps, 3'-processing and DNA strand transfer. Integrase is an attractive target for drug design because there is no known cellular analogue and integration is essential for successful replication of HIV. A computational three-dimensional (3-D) database search was used to identify novel HIV-1 integrase inhibitors. Starting from the previously identified Y3 (4-acetylamino-5-hydroxynaphthalene-2,7-disulfonic acid) binding site on the avian sarcoma virus integrase (ASV IN), a preliminary search of all compounds in the nonproprietary, open part of the National Cancer Institute 3-D database yielded a collection of 3100 compounds. A more rigorous scoring method was used to rescreen the 3100 compounds against both ASV IN and HIV-1 IN. Twenty-two of those compounds were selected for inhibition assays against HIV-1 IN. Thirteen of the 22 showed inhibitory activity against HIV-1 IN at concentrations less than 200 microM and three of them showed antiviral activities in HIV-1 infected CEM cells with effective concentrations (EC50) ranging from 0.8 to 200 microM. Analysis of the computer-generated binding modes of the active compounds to HIV-1 IN showed that simultaneous interaction with the Y3 site and the catalytic site is possible. In addition, interactions between the active compounds and the flexible loop involved in the binding of DNA by IN are indicated to occur. The structural details and the unique binding motif between the HIV-1 IN and its inhibitors identified in the present work may contribute to the future development of IN inhibitors.  相似文献   

18.
Retroviral integrases mediate site-specific endonuclease and transesterification reactions in the absence of exogenous energy. The basis for the sequence specificity in these integrase-viral DNA recognition processes is unknown. Structural analogs of the disintegration substrate were made to analyze the disintegration reaction mechanism for the Moloney murine leukemia virus (M-MuLV) integrase (IN). Modifications in the target DNA portion of the disintegration substrate decreased enzymatic activity, while substitution of the highly conserved CA in the viral long terminal repeat portion had no effect on activity. The role of the His-Cys finger region in catalysis was addressed by N-ethylmaleimide (NEM) modification of the cysteine residues of M-MuLV IN as well as by mutations. Both integration activities, 3' processing, and strand transfer, were completely inhibited by NEM modification of M-MuLV IN, while disintegration activity was only partially sensitive. However, structural analogs of the disintegration substrates that were modified in the target DNA and had the conserved CA removed were not active with NEM-treated M-MuLV IN. In addition, mutants made in the His-Cys region of M-MuLV IN were examined and found to also be completely blocked in integration but not disintegration activity. These data suggest that the domains of M-MuLV IN that are required for the forward integration reaction substrate differ from those required for the reverse disintegration reaction substrate.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) DNA integration intermediates consist of viral and host DNA segments separated by a 5-nucleotide gap adjacent to a 5'-AC unpaired dinucleotide. These short-flap (pre-repair) integration intermediates are structurally similar to DNA loci undergoing long-patch base excision repair in mammalian cells. The cellular proteins flap endonuclease 1 (FEN-1), proliferating cell nuclear antigen, replication factor C, DNA ligase I and DNA polymerase delta are required for the repair of this type of DNA lesion. The role of FEN-1 in the base excision repair pathway is to cleave 5'-unpaired flaps in forked structures so that DNA ligase can seal the single-stranded breaks that remain following gap repair. The rate of excision by FEN-1 of 5'-flaps from short- and long-flap oligonucleotide substrates that mimic pre- and post-repair HIV-1 integration intermediates, respectively, and the effect of HIV-1 integrase on these reactions were examined in the present study. Cleavage of 5'-flaps by FEN-1 in pre-repair HIV-1 integration intermediates was relatively inefficient and was further decreased 3-fold by HIV-1 integrase. The rate of removal of 5'-flaps by FEN-1 from post-repair HIV-1 integration intermediates containing relatively long (7-nucleotide) unpaired 5'-tails and short (1-nucleotide) gaps was increased 3-fold relative to that seen with pre-repair substrates and was further stimulated 5- to 10-fold by HIV-1 integrase. Overall, post-repair structures were cleaved 18 times more effectively in the presence of HIV-1 integrase than pre-repair structures. The site of cleavage was 1 or 2 nucleotides 3' of the branch point and was unaffected by HIV-1 integrase. Integrase alone had no detectable activity in removing 5'-flaps from either pre- or post-repair substrates.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) catalyzes the integration of viral DNA into the host chromosome, an essential step in retroviral replication. As a tool to study the structure and function of this enzyme, monoclonal antibodies (MAbs) against HIV-1 IN were produced. Epitope mapping demonstrated that the 17 MAbs obtained could be divided into seven different groups, and the selection of MAbs representing these groups were tested for their effect on in vitro activities of IN. Four groups of MAbs recognized epitopes within the region of amino acids (aa) 1 to 16, 17 to 38, or 42 to 55 in and around the conserved HHCC motif near the N terminus of IN. MAbs binding to these epitopes inhibited end processing and DNA joining and either stimulated or had little effect on disintegration and reintegration activities of IN. Two MAbs binding to epitopes within the region of aa 56 to 102 in the central core or aa 186 to 250 in the C-terminal half of the protein showed only minor effects on the in vitro activities of IN. Three Mabs which recognized on epitope within the region of aa262 to 271 of HIV-1 IN cross-reacted with HIV-2 IN. MAbs binding to this epitope clearly inhibited end processing and DNA joining and stimulated or had little effect on disintegration. In contrast to the N-terminal-specific MAbs, these C-terminal-specific MAbs abolished reintegration activity of IN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号