共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence 总被引:10,自引:0,他引:10
Abstract: Excitation energy dissipation, including the xanthophyll cycle, during senescence in wheat flag leaves grown in the field was investigated at midday and in the morning. With progress of senescence, photosynthesis (Pn) and actual PSII photochemical efficiency (ΦPSII) decreased markedly at midday. The decrease in extent of Pn was greater than that of ΦPSII. However, there was no significant decline in Pn and ΦPSII observed in the morning, except in leaves 60 days after anthesis. The kinetics of xanthophyll cycle activity, thermal dissipation (NPQ), and qf observed at midday during senescence exhibited two distinct phases. The first phase was characterized by an increase of xanthophyll cycle activity, NPQ, and qf during the first 45 days after anthesis. The second phase took place 45 days after anthesis, characterized by a dramatic decline in the above parameters. However, the qI, observed both at midday and in the morning, always increased along with senescence. A larger proportion of NPQ insensitive to DTT (an inhibitor of the de-epoxidation of V to Z) was also observed in severely senescent leaves. In the morning, only severely senescent leaves showed higher xanthophyll cycle activity, NPQ, qf , and qI. It was demonstrated that, at the beginning of senescence or under low light, wheat leaves were able to dissipate excess light energy via NPQ, depending on the xanthophyll cycle. However, the xanthophyll cycle was insufficient to protect leaves against photodamage under high light, when leaves became severely senescent. The ratio of (Fj - Fo)/(Fp - Fo) increased gradually during the first 45 days after anthesis, but dramatically increased 45 days after anthesis. We propose that another photoprotection mechanism might exist around reaction centres, activated in severely senescent leaves to protect leaves from photodamage. 相似文献
2.
Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves 总被引:7,自引:1,他引:7
Sun and shade leaves of several plant species from a neotropical forest were exposed to excessive light to evaluate the responses of photosystem I in comparison to those of photosystem II. Potential photosystem I activity was determined by means of the maximum P700 absorbance change around 810 nm (ΔA810max) in saturating far-red light. Leaf absorbance changes in dependence of increasing far-red light fluence rates were used to calculate a ‘saturation constant’, Ks, representing the far-red irradiance at which half of the maximal absorbance change (ΔA810max/2) was reached in the steady state. Photosystem II efficiency was assessed by measuring the ratio of variable to maximum chlorophyll fluorescence, Fv/Fm, in dark-adapted leaf samples. Strong illumination caused a high degree of photo-inhibition of photosystem II in all leaves, particularly in shade leaves. Exposure to 1800–2000 μ mol photons m−2 s−1 for 75 min did not substantially affect the potential activity of photosystem I in all species tested, but caused a more than 40-fold increase of Ks in shade leaves, and a three-fold increase of Ks in sun leaves. The increase in Ks was reversible during recovery under low light, and the recovery process was much faster in sun than in shade leaves. The novel effect of high-light stress on the light saturation of P700 oxidation described here may represent a complex reversible mechanism within photosystem I that regulates light-energy dissipation and thus protects photosystem I from photo-oxidative damage. Moreover, we show that under high-light stress a high proportion of P700 accumulates in the oxidized state, P700+. Presumably, conversion of excitation energy to heat by this cation radical may efficiently contribute to photoprotection. 相似文献
3.
Nickelsen K 《Photosynthesis research》2007,92(1):109-120
The oxidation kinetics under far-red light (FRL) of photosystem I (PSI) high potential donors P700, plastocyanin (PC), and
cytochrome f (Cyt f) were investigated in sunflower leaves with the help of a new high-sensitivity photometer at 810 nm. The
slopes of the 810 nm signal were measured immediately before and after FRL was turned on or off. The same derivatives (slopes)
were calculated from a mathematical model based on redox equilibrium between P700, PC and Cyt f and the parameters of the
model were varied to fit the model to the measurements. Typical best-fit pool sizes were 1.0–1.5 μmol m−2 of P700, 3 PC/P700 and 1 Cyt f/P700, apparent equilibrium constants were 15 between P700 and PC and 3 between PC and Cyt
f. Cyclic electron flow (CET) was calculated from the slope of the signal after FRL was turned off. CET activated as soon
as electrons accumulated on the PSI acceptor side. The quantum yield of CET was close to unity. Consequently, all PSI in the
leaf were able to perform in cycle, questioning the model of compartmentation of photosynthetic functions between the stroma
and grana thylakoids. The induction of CET was very fast, showing that it was directly redox-controlled. After longer dark
exposures CET dominated, because linear e− transport was temporarily hindered by the dark inactivation of ferredoxin-NADP reductase. 相似文献
4.
A wild soybean species Glycine cyrtoloba ACC547 was found to possess a high salinity resistance trait. It maintained higher net photosynthetic rate (PN) and maximal
photochemical efficiency (Fv/Fm) than the soybean Glycine max cultivar Melrose under salt stress. Saline treatment enlarged the post-illumination transient increase in chlorophyll fluorescence
in ACC547 much more than that in Melrose, indicating that its cyclic electron flow around photosystem 1 (CEF1) was accelerated
more by salt stress. Additionally, ACC547 maintained higher nonphotochemical dissipation of excitation energy than Melrose
under salt stress. It is suggested that the salinity resistance of ACC547 might be due to the CEF1-coupled dissipation of
excess excitation energy. 相似文献
5.
Photosystem II cyclic electron transport was investigated at low pH in spinach thylakoids and PS II preparations from the cyanobacteriumPhormidium laminosum. Variable fluorescence (Fv) quenching at a very low light intensity was examined as an indicator of cyclic electron flow. A progressive quenching of Fv was observed as the pH was lowered; however, this was shown to be mainly due to an inhibition of oxygen evolution. Cyclic electron flow in the uninhibited centres was estimated to occur at a rate comparable to or smaller than 1 mole O2 mg Chl–1 h–1 in the pH range 5.0 to 7.8.The quantum yeeld of oxygen production is known to decrease at low pH and has been taken to indicate cyclic electron flow (Crofts and Horton (1991) Biochim Biophys Acta 1058: 187–193). However, a direct all-or-none inhibition of oxygen production at low pH has also been reported (Meyer et al. (1989) Biochim Biophys Acta 974: 36–43). We have analysed the effects of light intensity on the rates of oxygen evolution in order to calculate U, the quantum yield of open and uninhibited centres. U was found to be constant over a broad pH range, and by using ferricyanide and phenyl-p-benzoquinone as electron acceptors the maximum possible rate of cyclic electron transport was equivalent to no more than 1 mole O2 mg Chl–1 h–1. The rate was no greater when the acceptor was adjusted to provide the most favourable conditions for cyclic flow. 相似文献
6.
Down-regulation of photosystem 2 efficiency and spectral reflectance in mango leaves under very low irradiance and varied chilling treatments 总被引:2,自引:0,他引:2
In order to elucidate the effects of chilling-stress at night on photosystem 2 (PS2) efficiency under dim irradiance (DI),
mango leaves were chilled to varied extent (8–3 °C) and for varied duration (0–12 h) in growth cabinets in the dark, and then
exposed to DI (20 μmol m−2 s−1 PPFD) at each chilling-temperature for 1 h. Chilling in the dark had little effect on Fv/Fm of mango leaves. But both the extent and duration of chilling pre-treatments significantly affected Fv’/Fm’ when leaves were exposed to DI. This down-regulation of PS2 efficiency was closely related to xanthophyll de-epoxidation,
assessed as photochemical reflectance index (PRI) and calculated from leaf spectral reflectance [(R531 − R570)/(R531 + R570)], and non-photochemical quenching (NPQ). The down-regulation of PS2 is a defence mechanism initiated at predawn in winter
to alleviate the damage of PS2 by the sudden and strong irradiation at sunrise. Mango leaves, transferred suddenly from warm
and dark room to DI and chilling showed a slight down-regulation of PS2 efficiency, in spite of an increased xanthophyll de-epoxidation.
This might have been due to the unavailability of some cofactors required for NPQ. 相似文献
7.
We investigated the role of cyclic electron flow around photosystem 1 (CEF1) and state transition (ST) in two soybean cultivars
that differed in salt tolerance. The CEF1 and maximum photochemical efficiency (Fv/Fm) were determined under control and NaCl (50 mM) stress and the NaCl-induced light-harvesting complex 2 (LHC2) phosphorylation
in vitro was analysed in light and dark. NaCl induced the increase of CEF1 more greatly in wild soybean Glycine cyrtoloba (cv. ACC547) than in cultivated soybean Glycine max (cv. Melrose). The Fv/Fm was reduced less in G. cyrtoloba than in G. max after 10-d NaCl stress. In G. cyrtoloba, the increase of CEF1 was associated with enhancement of LHC2 phosphorylation in thylakoid membrane under both dark and light.
However, in G. max the NaCl treatment decreased the LHC2 phosphorylation. Treatment with photosynthetic electron flow inhibitors (DCMU, DBMIB)
inhibited LHC2 phosphorylation more in G. max than in G. cyrtoloba. Thus the NaCl-induced up-regulation in CEF1 and ST might contribute to salt resistance of G. cyrtoloba. 相似文献
8.
Jack Myers 《Photosynthesis research》1987,14(1):55-69
Evidence for a cyclic electron flow has been sought by study of the steady-state poise of P700 and rate of photoreaction 1 in three cyanobacteria. Under an actinic light 1 (440 or 680 nm) the rate of photoreaction 1 is limited by the rate of electron supply provided by photoreaction 2 and by all return electron flow from low potential donors such as ferredoxin and NAD(P)H. Plots of p, the steady-state fraction of P700 reduced, versus the reciprocal intensity, 1/I, yield linear segments of slope Ip. From considerations of a simple model the slopes and extrapolated intercepts of the linear segments provide estimates of the rate of return electron flow. Analysis shows that the total return electron flow cannot be large, by one estimate not more than three times the rate of dark respiration. This result leads to a conclusion that cyclic electron flow (and any dependent phosphorylation) is not a significant process in these cyanobacteria at ordinary light intensities.Abbreviations DAD
diaminodurene
- PMS
phenazine methosulfate 相似文献
9.
Xiao‐Hui Jia Peng‐Peng Zhang Ding‐Ji Shi Hua‐Ling Mi Jia‐Cheng Zhu Xi‐Wen Huang Pei‐Min He 《植物学报(英文版)》2015,57(5):468-476
Since pepc gene encoding phosphoenolpyruvate carboxylase(PEPCase) has been cloned from Anabaena sp. PCC7120 and other cyanobacteria, the effects of pepc gene expression on photosynthesis have not been reported yet. In this study, we constructed mutants containing either upregulated(forward) or downregulated(reverse) pepc gene in Anabaena sp. PCC 7120. Results from real-time quantitative polymerase chain reaction(RT-q PCR), Western blot and enzymatic analysis showed that PEPCase activity was significantly reduced in the reverse mutant compared with the wild type, and that of the forward mutant was obviously increased.Interestingly, the net photosynthesis in both the reverse mutant and the forward mutant were higher than that of the wild type, but dark respiration was decreased only in the reverse mutant. The absorbance changes of P700 upon saturation pulse showed the photosystem I(PSI) activity was inhibited, as reflected by Y(I), and Y(NA) was elevated, and Rdark reduction of P700 t was stimulated, indicating enhanced cyclic electron flow(CEF) around PSI in the reverse mutant.Additionally, the reverse mutant photosynthesis was higher than that of the wild type in low temperature, low and high pH,and high salinity, and this implies increased tolerance in the reverse mutant through downregulated pepc gene. 相似文献
10.
The role of photorespiration in the foliar assimilation of nitrate (NO3–) and carbon dioxide (CO2) was investigated by measuring net CO2 assimilation, net oxygen (O2) evolution, and chlorophyll fluorescence in tomato leaves (Lycopersicon esculentum). The plants were grown under ambient CO2 with ammonium nitrate (NH4NO3) as the nitrogen source, and then exposed to a CO2 concentration of either 360 or 700 µmol mol?1, an O2 concentration of 21 or 2%, and either NO3– or NH4+ as the sole nitrogen source. The elevated CO2 concentration stimulated net CO2 assimilation under 21% O2 for both nitrogen treatments, but not under 2% O2. Under ambient CO2 and O2 conditions (i.e. 360 µmol mol?1 CO2, 21% O2), plants that received NO3– had 11–13% higher rates of net O2 evolution and electron transport rate (estimated from chlorophyll fluorescence) than plants that received NH4+. Differences in net O2 evolution and electron transport rate due to the nitrogen source were not observed at the elevated CO2 concentration for the 21% O2 treatment or at either CO2 level for the 2% O2 treatment. The assimilatory quotient (AQ) from gas exchange, the ratio of net CO2 assimilation to net O2 evolution, indicated more NO3– assimilation under ambient CO2 and O2 conditions than under the other treatments. When the AQ was derived from gross O2 evolution rates estimated from chlorophyll fluorescence, no differences could be detected between the nitrogen treatments. The results suggest that short‐term exposure to elevated atmospheric CO2 decreases NO3– assimilation in tomato, and that photorespiration may help to support NO3– assimilation. 相似文献
11.
The xanthophyll cycle and the water-water cycle had different functional significance in chilling-sensitive sweet pepper upon exposure to chilling temperature (4 °C) under low irradiance (100 µmol m−2 s−1) for 6 h. During chilling stress, effects of non-photochemical quenching (NPQ) on photosystem 2 (PS2) in dithiothreitol (DTT) fed leaves remained distinguishable from that of the water-water cycle in diethyldithiocarbamate (DDTC) fed leaves. In DTT-fed leaves, NPQ decreased greatly accompanied by visible inhibition of the de-epoxidized ratio of the xanthophyll cycle, and maximum photochemical efficiency of PS2 (Fv/Fm) decreased markedly. Thus the xanthophyll cycle-dependent NPQ could protect PS2 through energy dissipation under chilling stress. However, NPQ had a slighter effect on photosystem 1 (PS1) in DTT-fed leaves than in DDTC-fed leaves, whereas effects of the water-water cycle on PS1 remained distinguishable from that of NPQ. Inhibiting superoxide dismutase (SOD) activity increased the accumulation of
, the oxidation level of P700 (P700+) decreased markedly relative to the control and DTT-fed leaves. Both Fv/Fm and NPQ changed little in DDTC-fed leaves accompanied by little change of (A+Z)/(V+A+Z). This is the active oxygen species inducing PS1 photoinhibition in sweet pepper. The water-water cycle can be interrupted easily at chilling temperature. We propose that during chilling stress under low irradiance, the xanthophyll cycle-dependent NPQ has the main function to protect PS2, whereas the water-water cycle is not only the pathway to dissipate energy but also the dominant factor causing PS1 chilling-sensitivity in sweet pepper.This research was supported by the State Key Basic Research and Development Plan of China (G1998010100), the Natural Science Foundation of China (30370854), and the open project from Key Lab of Crop Biology of Shandong Province. 相似文献
12.
The plants of Prosopis juliflora growing in northern India are exposed to large variations of temperature, vapour pressure deficits (VPD), and photosynthetic photon flux density (PPFD) throughout the year. Under these conditions P. juliflora had two short periods of leaf production, one after the winter season and second after summer, which resulted in two distinct even aged cohorts of leaves. In winter with cold nights (2–8 °C) and moderate temperatures during the day, the plants showed high rates of photosynthesis. In summer the midday temperatures often reached <45 °C and plants showed severe inhibition of photosynthesis. The leaves of second cohort appeared in July and showed typical midday depression of photosynthesis. An analysis of diurnal partitioning of the absorbed excitation energy into photochemistry showed that a smaller fraction of the energy was utilised for photochemistry and a greater fraction was dissipated thermally, further the photon utilisation for photochemistry and thermal dissipation is largely affected by the interaction of irradiance and temperature. The plants showed high photochemical efficiency of photosystem 2 (PS2) at predawn and very little photoinhibition in all seasons except in summer. The photoinhibition in summer was pronounced with very poor recovery during night. Since P. juliflora exhibited distinct pattern of senescence and production of new leaves after winter and summer stress period, it appeared that the ontogenic characteristic together with its ability for safe dissipation of excess radiant energy in P. juliflora contributes to its growth and survival. 相似文献
13.
Photosystem I-dependent cyclic electron transport is important in controlling Photosystem II activity in leaves under conditions of water stress 总被引:9,自引:0,他引:9
Eva Katona Spidola Neimanis Gerald Schönknecht Ulrich Heber 《Photosynthesis research》1992,34(3):449-464
Leaves of the C3 plant Brassica oleracea were illuminated with red and/or far-red light of different photon flux densities, with or without additional short pulses of high intensity red light, in air or in an atmosphere containing reduced levels of CO2 and/or oxygen. In the absence of CO2, far-red light increased light scattering, an indicator of the transthylakoid proton gradient, more than red light, although the red and far-red beams were balanced so as to excite Photosystem II to a comparable extent. On red background light, far-red supported a transthylakoid electrical field as indicated by the electrochromic P515 signal. Reducing the oxygen content of the gas phase increased far-red induced light scattering and caused a secondary decrease in the small light scattering signal induced by red light. CO2 inhibited the light-induced scattering responses irrespective of the mode of excitation. Short pulses of high intensity red light given to a background to red and/or far-red light induced appreciable additional light scattering after the flashes only, when CO2 levels were decreased to or below the CO2 compensation point, and when far-red background light was present. While pulse-induced light scattering increased, non-photochemical fluorescence quenching increased and F0 fluorescence decreased indicating increased radiationless dissipation of excitation energy even when the quinone acceptor QA in the reaction center of Photosystem II was largely oxidized. The observations indicate that in the presence of proper redox poising of the chloroplast electron transport chain cyclic electron transport supports a transthylakoid proton gradient which is capable of controlling Photosystem II activity. The data are discussed in relation to protection of the photosynthetic apparatus against photoinactivation.Abbreviations F, FM, F'M, F"M, F0, F'0
chlorophyll fluorescence levels
- exc
quantum efficiency of excitation energy capture by open Photosystem II
- PS II
quantum efficiency of electron flow through Photosystem II
- P515
field indicating rapid absorbance change peaking at 522 nm
- P700
primary donor of Photosystem I
- QA
primary quinone acceptor in Photosystem II
- QN
non-photochemical fluorescence quenching
- Qq
photochemical quenching of chlorophyll fluorescence 相似文献
14.
In angiosperms, cyclic electron transport (CET) around photosystem I (PSI) consists of two pathways, depending on PGR5/PGRL1 proteins and the chloroplast NDH complex. In single mutants defective in chloroplast NDH, photosynthetic electron transport is only slightly affected at low light intensity, but in double mutants impaired in both CET pathways photosynthesis and plant growth are severely affected. The question is whether this strong mutant phenotype observed in double mutants can be simply explained by the additive effect of defects in both CET pathways. In this study, we used the weak mutant allele of pgr5-2 for the background of double mutants to avoid possible problems caused by the secondary effects due to the strong mutant phenotype. In two double mutants, crr2-2 pgr5-2 and ndhs-1 pgr5-2, the plant growth was unaffected and linear electron transport was only slightly affected. However, NPQ induction was more severely impaired in the double mutants than in the pgr5-2 single mutant. A similar trend was observed in the size of the proton motive force. Despite the slight reduction in photosystem II parameters, PSI parameters were severely affected in the pgr5-2 single mutant, the phenotype that was further enhanced by adding the NDH defects. Despite the lack of ?pH-dependent regulation at the cytochrome b6f complex (donor-side regulation of PSI), the plastoquinone pool was more reduced in the double mutants than in the pgr5-2 single mutants. This phenotype suggests that both PGR5/PGRL1- and NDH-dependent CET contribute to supply sufficient acceptors from PSI by balancing the ATP/NADPH production ratio. 相似文献
15.
Mechanisms of energy dissipation in peanut under water stress 总被引:1,自引:0,他引:1
Effect of drought on the mechanisms of energy dissipation was evaluated in two-month-old Arachis hypogaea cvs. 57–422, 73–30, and GC 8–35. Plants were submitted to three treatments: control (C), mild water stress (S1), and severe
water stress (S2). Photosynthetic performance was evaluated as the Hill and Mehler reactions. These activities were correlated
with the contents of the low and high potential forms of cytochrome (cyt) b
559, plastoquinone, cyt b
563, and cyt f. Additionally, the patterns of carotenoids and chlorophylls (Chls), as well as the alterations of Chl a fluorescence parameters were studied. Under mild water stress the regulatory mechanism at the antennae level was effective
for 57–422 and GC 8–35, while in the cv. 73–30 an overcharge of photosynthetic apparatus occurred. Relative to this cv., under
S1 the stability of carotene and the dissipative cycle around photosystem (PS) 2 became an important factor for the effective
protection of the PS2 reaction centres. The cyclic electron flow around PS1 was important for energy dissipation under S1
only for the cvs. 57–422 and 73–30. 相似文献
16.
To probe the role of xanthophylls in non-photochemical quenching (NPQ) and the compensatory acclimated photoprotection mechanisms, a tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) Xa mutant with deficit in lutein (L) and neoxanthin (N) contents was used. The Xa mutant showed lowered NPQ, an increased degree of de-epoxidation state [(A+Z)/(V+A+Z)], and decreases of photosystem 2 (PS2) antenna size. Although the Xa mutant had a CO2 assimilation rate similar to that of Ailsa Craig, it exhibited a much larger stomatal conductance (g s) than Ailsa Craig. Decreased electron flux in PS2 (J PS2) for the Xa mutant was associated with electron flux for photorespiratory carbon oxidation (J o) and alternative electron flux in PS2 (J a) while electron flux for photosynthetic carbon reduction (J c) was not different from Ailsa Craig. Moreover, the Xa mutant also exhibited higher activities of antioxidant enzymes, higher contents of ascorbate and glutathione, and lower contents of reactive oxygen species. Hence some compensatory acclimated mechanisms of photoprotection operated properly in the lack of NPQ and xanthophylls. 相似文献
17.
The effects of chilling under low light (9/7 °C, 100 µmol m?2 s?1) on the photosynthetic and antioxidant capacities and subsequent recovery were examined in two (one tolerant and one sensitive) cucumber genotypes. Chilling resulted in an irreversible inhibition of net CO2 assimilation and growth for the sensitive genotype, which was accompanied by decreases in the maximum velocity of RuBP carboxylation by Rubisco (Vcmax), the capacity for ribulose‐1,5‐bisphosphate regeneration (Jmax), Rubisco content and activity, and the quantum efficiency of photosystem II, in the absence of any stomatal limitation of CO2 supply or inorganic phosphate limitation. In contrast, CO2 assimilation for the tolerant genotype fully recovered after chill. The chill‐induced decrease in the proportion of electron flux for photosynthetic carbon reduction was mostly compensated by an O2‐dependent alternative electron flux driven by the water–water cycle, especially in the sensitive genotype. Compared with the tolerant genotype, the sensitive genotype after chill showed reduced capacity for scavenging reactive oxygen species and increased accumulation of reactive oxygen species. The balance between O2‐dependent alternative electron flux and the capacity for scavenging reactive oxygen species in response to chill plays a major role in determining the tolerance of cucumber leaves to this stress factor. It is concluded that the water–water cycle operates at high rates when CO2 assimilation is restricted in cucumber leaves subjected to chill and low light conditions. 相似文献
18.
Photosynthetic rates of green leaves (GL) and green flower petals (GFP) of the CAM plant Dendrobium cv. Burana Jade and their sensitivities to different growth irradiances were studied in shade-grown plants over a period
of 4 weeks. Maximal photosynthetic O2 evolution rates and CAM acidities [dawn/dusk fluctuations in titratable acidity] were higher in leaves exposed to intermediate
sunlight [a maximal photosynthetic photon flux density (PPFD) of 500–600 μmol m−2 s−1] than in leaves grown under full sunlight (a maximal PPFD of 1 000–1 200 μmol m−2 s−1) and shade (a maximal PPFD of 200–250 μmol m−2 s−1). However, these two parameters of GFP were highest in plants grown under the shade and lowest in full sun-grown plants.
Both GL and GFP of plants exposed to full sunlight had lower predawn Fv/Fm [dark adapted ratio of variable to maximal fluorescence (the maximal photosystem 2 yield without actinic irradiation)] than
those of shade-grown plants. When exposed to intermediate sunlight, however, there were no significant changes in predawn
Fv/Fm in GL whereas a significant decrease in predawn Fv/Fm was found in GFP of the same plant. GFP exposed to full sunlight exhibited a greater decrease in predawn Fv/Fm compared to those exposed to intermediate sunlight. The patterns of changes in total chlorophyll (Chl) content of GL and
GFP were similar to those of Fv/Fm. Although midday Fv/Fm fluctuated with prevailing irradiance, changes of midday Fv/Fm after exposure to different growth irradiances were similar to those of predawn Fv/Fm in both GL and GFP. The decreases in predawn and midday Fv/Fm were much more pronounced in GFP than in GL under full sunlight, indicating greater sensitivity in GFP to high irradiance
(HI). In the laboratory, electron transport rate and photochemical and non-photochemical quenching of Chl fluorescence were
also determined under different irradiances. All results indicated that GFP are more susceptible to HI than GL. Although the
GFP of Dendrobium cv. Burana Jade require a lower amount of radiant energy for photosynthesis and this plant is usually grown in the shade,
is not necessarily a shade plant. 相似文献
19.
Yamori W Sakata N Suzuki Y Shikanai T Makino A 《The Plant journal : for cell and molecular biology》2011,68(6):966-976
The role of NAD(P)H dehydrogenase (NDH)-dependent cyclic electron flow around photosystem I in photosynthetic regulation and plant growth at several temperatures was examined in rice (Oryza sativa) that is defective in CHLORORESPIRATORY REDUCTION 6 (CRR6), which is required for accumulation of sub-complex A of the chloroplast NDH complex (crr6). NdhK was not detected by Western blot analysis in crr6 mutants, resulting in lack of a transient post-illumination increase in chlorophyll fluorescence, and confirming that crr6 mutants lack NDH activity. When plants were grown at 28 or 35°C, all examined photosynthetic parameters, including the CO(2) assimilation rate and the electron transport rate around photosystems I and II, at each growth temperature at light intensities above growth light (i.e. 800 μmol photons m(-2) sec(-1)), were similar between crr6 mutants and control plants. However, when plants were grown at 20°C, all the examined photosynthetic parameters were significantly lower in crr6 mutants than control plants, and this effect on photosynthesis caused a corresponding reduction in plant biomass. The F(v)/F(m) ratio was only slightly lower in crr6 mutants than in control plants after short-term strong light treatment at 20°C. However, after long-term acclimation to the low temperature, impairment of cyclic electron flow suppressed non-photochemical quenching and promoted reduction of the plastoquinone pool in crr6 mutants. Taken together, our experiments show that NDH-dependent cyclic electron flow plays a significant physiological role in rice during photosynthesis and plant growth at low temperature. 相似文献
20.
In sunflower (Helianthus annuus L.) grown under controlled conditions and subjected to drought by withholding watering, net photosynthetic rate (P
N) and stomatal conductance (g
s) of attached leaves decreased as leaf water potential (Ψw) declined from −0.3 to −2.9 MPa. Although g
s decreased over the whole range of Ψw, nearly constant values in the intercellular CO2 concentrations (C
i) were observed as Ψw decreased to −1.8 MPa, but C
i increased as Ψw decreased further. Relative quantum yield, photochemical quenching, and the apparent quantum yield of photosynthesis decreased
with water deficit, whereas non-photochemical quenching (qNP) increased progressively. A highly significant negative relationship between qNP and ATP content was observed. Water deficit did not alter the pyridine nucleotide concentration but decreased ATP content
suggesting metabolic impairment. At a photon flux density of 550 μmol m−2 s−1, the allocation of electrons from photosystem (PS) 2 to O2 reduction was increased by 51 %, while the allocation to CO2 assimilation was diminished by 32 %, as Ψw declined from −0.3 to −2.9 MPa. A significant linear relationship between mean P
N and the rate of total linear electron transport was observed in well watered plants, the correlation becoming curvilinear
when water deficit increased. The maximum quantum yield of PS2 was not affected by water deficit, whereas qP declined only at very severe stress and the excess photon energy was dissipated by increasing qNP indicating that a greater proportion of the energy was thermally dissipated. This accounted for the apparent down-regulation
of PS2 and supported the protective role of qNP against photoinhibition in sunflower. 相似文献