首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the relative effects of landscape configuration, environmental variables, forest age, and spatial variables on estimated aboveground biomass (AGB) in Costa Rican secondary rain forests patches. We measured trees ≥5 cm dbh in 24, 0.25 ha plots and estimated AGB for trees 5–24.9 cm dbh and for trees >25 cm dbh using two allometric equations based on multispecies models using tree dbh and wood‐specific gravity. AGB averaged 87.3 Mg/ha for the 24 plots (not including remnant trees) and 123.4 Mg/ha including remnant trees (20 plots). There was no effect of forest age on AGB. Variation partitioning analysis showed that soils, climate, landscape configuration, and space together explained 61% of tree AGB variance. When controlling for the effects of the other three variables, only soils remained significant. Soil properties, specifically K and Cu, had the strongest independent effect on AGB (variation partitioning, R2 = 0.17, p = 0.0310), indicating that in this landscape, AGB variation in secondary forest patches is influenced by soil chemical properties. Elucidating the relative influence of soils in AGB variation is critical for understanding changes associated with land cover modification across Neotropical landscapes, as it could have important consequences for land use planning since secondary forests are considered carbon sinks. Abstract in Spanish is available with online material.  相似文献   

2.
Allometric equations to estimate aboveground biomass (AGB) and plant part biomasses (PPB) of three mangrove species, Rhizophora mangle, Avicennia schaueriana, and Laguncularia racemosa, were determined in Itamaracá, Pernambuco, Brazil (7°48′44″S and 34°49′39″W). Twenty-three to thirty-six trees of each species, ranging in height (H) from 1.6 to 11.8 m and in diameter, at breast height or above prop roots (D), from 2 to 21 cm, were measured, cut, and separated into stems, branches, leaves, and prop roots. Biomass proportions in each tree part were similar among species, excluding prop roots: stems 37–47%, branches 41–46%, and leaves 11–17%. Prop roots represented 37% of AGB in R. mangle. Tree size had a significant but not large influence on biomass distribution among plant parts: as stem diameters increased the proportions allocated to leaves decreased and those to stems and branches increased. AGB and PPB were significantly related to D and D2 × H and the best fittings were obtained with power equations. A few equations from literature fitted the data reasonably well for AGB of one or two of the species but resulted in large errors for the others. Applying the equations to previous measurements of tree diameters in a sample area, AGB for the mangrove site was estimated at 105 Mg ha−1, with 78, 19, and 3% corresponding to biomasses of R. mangle, L. racemosa, and A. schaeuriana trees, respectively.  相似文献   

3.
The negative effects of biological invasion are often the focus of ecological studies, but few have considered potential positive impacts, such as increased carbon storage, resulting from invasion. We combined airborne imaging spectrometer and LiDAR (light detection and ranging) observations with field measurements to assess if the highly invasive nitrogen-fixing tree Morella faya alters canopy 3-D structure and aboveground biomass (AGB) along a 1,500 mm precipitation gradient in Hawaii. Airborne analysis of canopy water content, leaf nitrogen concentration, fractional canopy cover, and vegetation height facilitated mapping of native- and Morella-dominated canopies in rainforest, woodland–savanna and shrubland ecosystems, with Morella detection errors ranging from 0 to 13.4%. Allometric equations were developed to relate the combined LiDAR and spectral data to field-based AGB estimates (r 2 = 0.97, P < 0.01), and to produce a map of biomass stocks throughout native and invaded ecosystems. The structure of the invasive Morella canopies varied by ecosystem type, and the invader shaded out native understory plants in rainforest zones. Despite a 350% increase in AGB going from shrubland to rainforest, Morella did not increase average AGB in any ecosystem it invaded. Furthermore, spatial distributions of biomass indicated that Morella decreased maximum AGB in the woodland–savanna ecosystems. We conclude that Morella tree invasion does not enhance aboveground carbon stocks in any ecosystem it invades in Hawaii, thereby minimizing its contribution to this potentially important ecosystem service. We also found that the fusion of spectral and LiDAR remote sensing provided canopy chemical and structural data facilitating a landscape assessment of how biological invasion alters on carbon stocks and other ecosystem properties.  相似文献   

4.
Aim This study investigates how estimated tree aboveground biomass (AGB) of tropical montane rain forests varies with elevation, and how this variation is related to elevational change in floristic composition, phylogenetic community structure and the biogeography of the dominant tree taxa. Location Lore Lindu National Park, Sulawesi, Indonesia. Methods Floristic inventories and stand structural analyses were conducted on 13 plots (each 0.24 ha) in four old‐growth forest stands at 1050, 1400, 1800 and 2400 m a.s.l. (submontane to upper montane elevations). Tree AGB estimates were based on d.b.h., height and wood specific gravity. Phylogenetic diversity and biogeographical patterns were analysed based on tree family composition weighted by AGB. Elevational trends in AGB were compared with other Southeast Asian and Neotropical transect studies (n = 7). Results AGB was invariant from sub‐ to mid‐montane elevation (309–301 Mg ha?1) and increased slightly to 323 Mg ha?1 at upper montane elevation. While tree and canopy height decreased, wood specific gravity increased. Magnoliids accounted for most of the AGB at submontane elevations, while eurosids I (including Fagaceae) contributed substantially to AGB at all elevations. Phylogenetic diversity was highest at upper montane elevations, with co‐dominance of tree ferns, Podocarpaceae, Trimeniaceae and asterids/euasterids II, and was lowest at lower/mid‐montane elevations, where Fagaceae contributed > 50% of AGB. Biogeographical patterns showed a progression from dominant tropical families at submontane to tropical Fagaceae (Castanopsis, Lithocarpus) at lower/mid‐montane, and to conifers and Australasian endemics at upper montane elevations. Cross‐continental comparisons revealed an elevational AGB decrease in transects with low/no presence of Fagaceae, but relatively high AGB in montane forests with moderate to high abundance of this family. Main conclusions AGB is determined by both changes in forest structure and shifts in species composition. In our study, these two factors traded off so that there was no net change in AGB, even though there were large changes in forest structure and composition along the elevational gradient. Southeast Asian montane rain forests dominated by Fagaceae constitute important carbon stocks. The importance of biogeography and species traits for biomass estimation should be considered by initiatives to reduce emissions from deforestation and forest degradation (REDD) and in taxon choice in reforestation for carbon offsetting.  相似文献   

5.
In order to analyze the dyanmics of heavy metals in a forest ecosystem, throughfall and stemflow were collected for individual rain showers in an evergreen broad-leaved forest dominated byCastanopsis cuspidata. The relation between throughfall (or stemflow) (Px) and gross rainfall (P) was approximated by a linear regression equationPx=a(P-b). The values of coefficient “a” were 0.32–2.02 for throughfall at each sampling point and the mean values for 1976 and 1977–1978 were 0.682 and 0.767, respectively. The stemflow volume differed widely among individual trees, depending mainly on the tree form of each species. In particular, the tree form ofPasania edulis was found to be especially suited to collecting stemflow. OneP. edulis tree collected 64% of the rainwater that fell onto its crown as stemflow. The ratio of stemflow to gross rainfall decreased in summer resulting from an increase in leaf biomass and an increase in air temperature. In fact, the values of coefficient “a” for mean stemflow per unit area were 0.180 for summer and 0.229 for other seasons in 1976, and 0.145 for summer and 0.155 for other seasons in 1977–1978 for different sampled trees.  相似文献   

6.
Forests play a major role in global carbon (C) cycle, and the carbon density (CD) could reflect its ecological function of C sequestration. Study on the CD of different forest types on a community scale is crucial to characterize in depth the capacity of forest C sequestration. In this study, based on the forest inventory data of 168 field plots in the study area (E 111°30′–113°50′, N 37°30′–39°40′), the forest vegetation was classified by using quantitative method (TWINSPAN); the living biomass of trees was estimated using the volume-derived method; the CD of different forest types was estimated from the biomass of their tree species; and the effects of biotic and abiotic factors on CD were studied using a multiple linear regression analysis. The results show that the forest vegetation in this region could be classified into 9 forest formations. The average CD of the 9 forest formations was 32.09 Mg ha−1 in 2000 and 33.86 Mg ha−1 in 2005. Form. Picea meyeri had the highest CD (56.48 Mg ha−1), and Form. Quercus liaotungensis Acer mono had the lowest CD (16.14 Mg ha−1). Pre-mature forests and mature forests were very important stages in C sequestration among four age classes in these formations. Forest densities, average age of forest stand, and elevation had positive relationships with forest CD, while slope location had negative correlation with forest CD.  相似文献   

7.
Tropical premontane forests between 700 and 1,400 m.a.s.l. represent a particular component of the gamma diversity of neotropical ecosystems; however, the extent of information about their dynamics lags behind the more studied lowland rain forests. Data from three 1-ha permanent plots in a premontane forest in Costa Rica collected during an 11-year period (1998–2009) suggested a high tree turnover rate for this ecosystem (high mortality rate, λ = 2.4% and annual recruitment, μ = 2.6%). The floristic composition did not significantly change during the study period, but its high dynamism (2.4%) exceeded that of several reported values from highly diverse neotropical lowland rain forests. The documented decrease in abundance (8.6%) and basal area (14.3%) of trees ≥10 cm in DBH differs from the general trend of increase described for several lowland tropical rain forests in recent decades. We detected a significant population reduction (>15% of individuals from 1998 to 2009) in several relatively abundant tree species, whereas the populations of the three most dominant species remained nearly constant. The high tree turnover recorded for this premontane forest might not have affected tree diversity; but it might be promoting recruitment and growth of some tree species that may eventually become over-dominant in this ecosystem.  相似文献   

8.

Assessing long-term changes in the biomass of old-growth forests with consideration of climate effects is essential for understanding forest ecosystem functions under a changing climate. Long-term biomass changes are the result of accumulated short-term changes, which can be affected by endogenous processes such as gap filling in small-scale canopy openings. Here, we used 26 years (1993–2019) of repeated tree census data in an old-growth, cool-temperate, mixed deciduous forest that contains three topographic units (riparian, denuded slope, and terrace) in northern Japan to document decadal changes in aboveground biomass (AGB) and their processes in relation to endogenous processes and climatic factors. AGB increased steadily over the 26 years in all topographic units, but different tree species contributed to the increase among the topographic units. AGB gain within each topographic unit exceeded AGB loss via tree mortality in most of the measurement periods despite substantial temporal variation in AGB loss. At the local scale, variations in AGB gain were partially explained by compensating growth of trees around canopy gaps. Climate affected the local-scale AGB gain: the gain was larger in the measurement periods with higher mean air temperature during the current summer but smaller in those with higher mean air temperature during the previous autumn, synchronously in all topographic units. The influences of decadal summer and autumn warming on AGB growth appeared to be counteracting, suggesting that the observed steady AGB increase in KRRF is not fully explained by the warming. Future studies should consider global and regional environmental factors such as elevated CO2 concentrations and nitrogen deposition, and include cool-temperate forests with a broader temperature range to improve our understanding on biomass accumulation in this type of forests under climate change.

  相似文献   

9.
In the Congo basin, considerable uncertainty remains about the amount and spatial variation of carbon stocks. We studied two types of seasonally flooded forests (dominated by Guibourtia demeusei and Lophira alata) and nearby terra firme forests in northern Congo. We sampled 1.25 ha per forest type and a total of 1,400 trees ≥5 cm diameter. AGB ranged from 207–343 Mg/ha, with no significant differences between forest types. Few significant differences were observed in vegetation structure or tree diversity between forest types. Species richness and stem density of small trees were lower, and dominance was higher in Guibourtia plots, which are subject to greater flooding than Lophira plots. Guibourtia was absent from smaller diameter class in Guibourtia forests; and Uapaca spp. were more abundant in terra firme than in seasonally flooded plots. We show that both types of seasonally flooded forests store important quantities of AGB and should also be considered in forest conservation programmes. We recommend more research on seasonally flooded forests, on larger geographical extent, which assesses flood depth and duration, and measures tree height in the field, as we took a conservative approach to AGB estimates, and AGB could be even greater than we report here.  相似文献   

10.
Overexploitation of forests to increase wood production has led to the replacement of native forest by large areas of monospecific tree plantations. In the present study, the effects of different monospecific tree cover plantations on density and composition of the indigenous soil microbial community are described. The experimental site of “Breuil-Chenue” in the Morvan (France) was the site of a comparison of a similar mineral soil under Norway spruce (Picea abies), Douglas fir (Pseudotuga menziesii), oak (Quercus sessiflora), and native forest [mixed stand dominated by oak and beech (Fagus sylvatica)]. Sampling was performed during winter (February) at three depths (0–5, 5–10, and 10–15 cm). Abundance of microorganisms was estimated via microbial biomass measurements, using the fumigation–extraction method. The genetic structure of microbial communities was investigated using the bacterial- and fungal-automated ribosomal intergenic spacer analysis (B-ARISA and F-ARISA, respectively) DNA fingerprint. Only small differences in microbial biomass were observed between tree species, the highest values being recorded under oak forest and the lowest under Douglas fir. B- and F-ARISA community profiles of the different tree covers clustered separately, but noticeable similarities were observed for soils under Douglas fir and oak. A significant stratification was revealed under each tree species by a decrease in microbial biomass with increasing depths and by distinct microbial communities for each soil layer. Differences in density and community composition according to tree species and depth were related to soil physicochemical characteristics and organic matter composition.  相似文献   

11.
We used clearcut logging in establishing four replicated sizes of canopy openings (0.016, 0.08, 0.4, and 2.0 ha) in a southern Appalachian hardwood forest in 1981 to examine the long-term effects of disturbance size on plant community structure, biomass accumulation, aboveground net primary productivity (NPP), and mode of recovery. The reestablishment of NPP and biomass following logging was 6–7-fold greater in large than small openings by 17 years. Total biomass in the 2.0 ha openings (127.3 Mg ha−1) recovered 59.5% as NPP (19.7 Mg ha−1 yr−1) reached 225% of precut forest levels. Biomass accumulation was 2.6–3.6-fold greater in interior than edge locations of all but the 0.016 ha gaps. The absence of significant patch size or edge vs. interior differences in tree densities suggests that growth rates of individual trees were enhanced in more insolated microenvironments. Sprouting (86–95% of tree NPP) was much more important than advance regeneration (4–10%) or seedling germination (<2%) during early recovery in all opening sizes. Canopy dominant Quercus and Carya trees exhibited limited sprouting following disturbance. Instead, shade-intolerant Robinia pseudoacacia and Liriodendron tulipifera were major sprouters that used N-fixation (Robinia) and rapid growth (Liriodendron) in attaining 7.4 and 5.9 fold greater biomass accumulation, respectively in 2.0 ha than 0.016 ha opening sizes. Seedling germination and understory production were extensive in all openings following logging, but declined rapidly as the young tree canopy began closing by 4–6 years. The relative importance of shade-intolerant tree biomass approximately doubled over 17 years as shade-tolerant tree seedlings, herbs, and shrubs gradually regained importance under the emerging canopy. Sprouting caused the persistence of a tree species composition in all openings that remained relatively similar to the precut forest. Large disturbances on mountain slopes of the southern Appalachians generally promote sprouting and rapid recovery, whereas small disturbances in low-elevation cove forests lead to a gradual recovery through seedling germination and/or advance regeneration. Continued logging in the southern Appalachians will increase the relative size and frequency of large disturbances, further the importance of sprouting of shade-intolerant species, and lead to more even-aged forest stands throughout the region.  相似文献   

12.
Despite the increasing interest in the role of African savannah and woodlands on the global carbon cycle, little is known about the above-ground biomass (AGB) and the factors affecting it in these ecosystems in West Africa. We estimated AGB in different vegetation types of a forest–savannah mosaic in Togo, and we investigated the relationship between AGB, structural and diversity attributes. We also assessed the effects of using the ≥5 or ≥10 cm diameter threshold on AGB estimates. We sampled tree diameter, height and species of all trees ≥5 cm diameter following standardised protocols in 160 plots of 50 × 20 m (50 × 10 m for riparian). Above-ground biomass (AGB) (all trees ≥5 cm diameter) ranged from 6.2 Mg/ha in shrub savannah to 292 Mg/ha in riparian forest and showed significant differences between vegetation types. Differences in AGB were related to structural attributes, with little influence of diversity attributes. The effects of minimum tree diameter size (5 or 10 cm) on AGB estimates were negligible. At a landscape level, closed-canopy and open forests stored important quantities of carbon. We highlight the importance of the forest–savannah mosaic as a large carbon pool, which could be released if converted to another land cover type.  相似文献   

13.
In vegetated terrestrial ecosystems, carbon in below- and aboveground biomass (BGB, AGB) often constitutes a significant component of total-ecosystem carbon stock. Because carbon in the BGB is difficult to measure, it is often estimated using BGB to AGB ratios. However, this ratio can change markedly along resource gradients, such as water availability, which can lead to substantial errors in BGB estimates. In this study, BGB and AGB sampling was carried out in Eucalyptus populnea-dominated woodland communities of northeast Australia to examine patterns of BGB to AGB ratio and vertical root distribution at three sites along a rainfall gradient (367, 602, and 1,101 mm). At each site, a vegetation inventory was undertaken on five transects (100 × 4 m), and trees representing the E. populnea vegetation structure were harvested and excavated to measure aboveground and coarse-root (diameter of at least 15 mm) biomass. Biomass of fine and small roots (diameter less than 15 mm) at each site was estimated from 40 cores sampled to 1 m depth. The BGB to AGB ratio of E. populnea-dominated woodland plant communities declined from 0.58 at the xeric end to 0.36 at the mesic end of the rainfall gradient. This was due to a marked decline in AGB with increased aridity whereas the BGB was relatively stable. The vertical distribution of fine roots in the top 1 m of soil varied along the rainfall gradient. The mesic sites had more fine-root biomass (FRB) in the upper soil profile and less at depth than the xeric site. Accordingly, at the xeric site, a much larger proportion of FRB was found at depth compared to the mesic sites. The vertical distribution patterns of small roots of the E. populnea woodland plant communities were consistently )-shaped, with the highest biomass occurring at 15–30-cm depth. The potential significance of such a rooting pattern for grass–tree and shrub–tree co-existence in these ecosystems is discussed. Overall, our results revealed marked changes in BGB to AGB ratio of E. populnea woodland communities along a rainfall gradient. Because E. populnea woodlands cover a large area (96 M ha), their contribution to continental-scale carbon sequestration and greenhouse gas emission can be substantial. Use of the rainfall-zone-specific ratios found in this study, in lieu of a single generic ratio for the entire region, will significantly improve estimates of BGB carbon stocks in these woodlands. In the absence of more specific data, our results will also be relevant in other regions with similar vegetation and rainfall gradients (that is, arid and semiarid woodland ecosystems).  相似文献   

14.
Forest structure is strongly related to forest ecology, and it is a key parameter to understand ecosystem processes and services. Airborne laser scanning (ALS) is becoming an important tool in environmental mapping. It is increasingly common to collect ALS data at high enough point density to recognize individual tree crowns (ITCs) allowing analyses to move beyond classical stand‐level approaches. In this study, an effective and simple method to map ITCs, and their stem diameter and aboveground biomass (AGB) is presented. ALS data were used to delineate ITCs and to extract ITCs’ height and crown diameter; then, using newly developed allometries, the ITCs’ diameter at breast height (DBH) and AGB were predicted. Gini coefficient of DBHs was also predicted and mapped aggregating ITCs predictions. Two datasets from spruce dominated temperate forests were considered: one was used to develop the allometric models, while the second was used to validate the methodology. The proposed approach provides accurate predictions of individual DBH and AGB (R2 = .85 and .78, respectively) and of tree size distributions. The proposed method had a higher generalization ability compared to a standard area‐based method, in particular for the prediction of the Gini coefficient of DBHs. The delineation method used detected more than 50% of the trees with DBH >10 cm. The detection rate was particularly low for trees with DBH below 10 cm, but they represent a small amount of the total biomass. The Gini coefficient of the DBH distribution was predicted at plot level with R2 = .46. The approach described in this work, easy applicable in different forested areas, is an important development of the traditional area‐based remote sensing tools and can be applied for more detailed analysis of forest ecology and dynamics.  相似文献   

15.
Ectomycorrhizas (EM) are among the most active components of forest soil biomass because they represent the dominant soil carbon efflux from forests. However, temporal patterns of EM biomass in relation to climatic factors and host tree growth remain unclear. We sampled EM and fine roots of pine each month for 6 years (May 2003 to June 2009) in a 40–50-year-old Pinus densiflora forest in Japan. Tree ring width of host pines in the plot was measured to assess the chronological sequence of annual tree growth. EM biomass was not stable during the 6 years of monitoring and seasonal patterns were indistinct. Multiple correlation analyses revealed that the autumn precipitation in the previous year was the most determinative factor of EM biomass in the current year, with a negative correlation. In contrast, tree ring width generally showed a stable annual growth pattern throughout the monitoring period. Clarification of such a carbon allocation pattern is important in understanding forest carbon dynamics under a temperate monsoon climate.  相似文献   

16.
Tropical rain forests decrease in tree height and aboveground biomass (AGB) with increasing elevation. The causes of this phenomenon remain insufficiently understood despite a number of explanations proposed including direct or indirect effects of low temperature on carbon acquisition and carbon investment, adverse soil conditions and impaired nutrient supply. For analysing altitudinal patterns of aboveground/belowground carbon partitioning, we measured fine (<2 mm in diameter) and coarse root (2–5 mm) biomass and necromass and leaf area index (LAI), and estimated AGB from stand structural parameters in five tropical mountain rain forests at 1050, 1540, 1890, 2380 and 3060 m along an altitudinal transect in the South Ecuadorian Andes. Average tree height and AGB were reduced to less than 50% between 1050 and 3060 m, LAI decreased from 5.1 to 2.9. The leaf area reduction must have resulted in a lowered canopy carbon gain and thus may partly explain the reduced tree growth in the high-elevation stands. In contrast, both fine and coarse root biomass significantly increased with elevation across this transect. The ratio of root biomass (fine and coarse) to AGB increased more than ten-fold from 0.04 at 1050 m to 0.43 at 3060 m. Under the assumption that fine root biomass does reflect root productivity, our data indicate a marked belowground shift in C allocation with increasing elevation. Possible explanations for this allocation shift are discussed including reduced N supply due to low temperatures, water logging or adverse soil chemical conditions. We conclude that the fine root system and its activity may hold the key for understanding the impressive reduction in tree size along tropical mountain slopes in Ecuador. Analyses of fine root turnover and longevity in relation to environmental factors along altitudinal transects in tropical mountains are urgently needed.  相似文献   

17.
A number of studies have investigated regional and continental scale patterns of carbon (C) stocks in forest ecosystems; however, the altitudinal changes in C storage in different components (vegetation, detritus, and soil) of forest ecosystems remain poorly understood. In this study, we measured C stocks of vegetation, detritus, and soil of 22 forest plots along an altitudinal gradient of 700–2,000 m to quantify altitudinal changes in carbon storage of major forest ecosystems (Pinus koraiensis and broadleaf mixed forest, 700–1,100 m; Picea and Abies forest, 1,100–1,800 m; and Betula ermanii forest, 1,800–2,000 m) on Mt Changbai, Northeast China. Total ecosystem C density (carbon stock per hectare) averaged 237 t C ha−1 (ranging from 112 to 338 t C ha−1) across all the forest stands, of which 153 t C ha−1 (52–245 t C ha−1) was stored in vegetation biomass, 14 t C ha−1 (2.2–48 t C ha−1) in forest detritus (including standing dead trees, fallen trees, and floor material), and 70 t C ha−1 (35–113 t C ha−1) in soil organic matter (1-m depth). Among all the forest types, the lowest vegetation and total C density but the highest soil organic carbon (SOC) density occurred in Betula ermanii forest, whereas the highest detritus C density was observed in Picea and Abies forest. The C density of the three ecosystem components showed distinct altitudinal patterns: with increasing altitude, vegetation C density decreased significantly, detritus C density first increased and then decreased, and SOC density exhibited increasing but insignificant trends. The allocation of total ecosystem C to each component exhibited similar but more significant trends along the altitudinal gradient. Our results suggest that carbon storage and partitioning among different components in temperate forests on Mt Changbai vary greatly with forest type and altitude.  相似文献   

18.
  1. It is well understood that biotic and abiotic variables influence forest productivity. However, in regard to temperate forests, the relative contributions of the aforementioned drivers to biomass demographic processes (i.e., the growth rates of the survivors and recruits) have not received a great deal of attention. Thus, this study focused on the identification of the relative influencing effects of biotic and abiotic variables in the demographic biomass processes of temperate forests.
  2. This study was conducted in the Changbai Mountain Nature Reserve, in northeastern China. Based on the observational data collected from three 5.2‐hectare forest plots, the annual above‐ground biomass (AGB) increment (productivity) of the surviving trees, recruits, and the total tree community (survivors + recruits) were estimated. Then, the changes in the forest productivity in response to biotic variables (including species diversity, structural diversity, and density variables) along with abiotic variables (including topographic and soil variables) were evaluated using linear mixed‐effect models.
  3. This study determined that the biotic variables regulated the variabilities in productivity. Density variables were the most critical drivers of the annual AGB increments of the surviving trees and total tree community. Structural diversity enhanced the annual AGB increments of the recruits, but diminished the annual AGB increments of the surviving trees and the total tree community. Species diversity and abiotic variables did not have impacts on the productivity in the examined forest plots.
  4. The results highlighted the important roles of forest density and structural diversity in the biomass demographic processes of temperate forests. The surviving and recruit trees were found to respond differently to the biotic variables, which suggested that the asymmetric competition had shaped the productivity dynamics in forests. Therefore, the findings emphasized the need to consider the demographic processes of forest productivity to better understand the functions of forests.
  相似文献   

19.
Moso bamboo extensively distributes in southeast and south Asia, and plays an important role in global carbon budget. However, its spatial distribution and heterogeneity are poorly understood. This research uses geostatistics theory to examine the spatial heterogeneity of aboveground biomass (AGB) of moso bamboo, and uses a point kriging interpolation method to estimate and map its spatial distribution. Results showed that (1) spatial heterogeneity and spatial pattern of moso bamboo’s AGB can be revealed by an exponential semivariance model. The analysis of the model structure indicating that the AGB spatial heterogeneity is mainly composed of spatial autocorrelation components, and spatial autocorrelation range is from 360 to 41,220 m; (2) kriging standard deviation map showing the level of the model errors indicates that the AGB spatial distribution by point kriging interpolation method is reliable; (3) the average AGB of moso bamboo in Anji County is 44.228 Mg hm−2, and carbon density is 20.297 Mg C hm−2. The total AGB of moso bamboo accounts for 16.97% of the total forest-stand biomass in Zhejiang province. The total carbon storage of moso bamboo in China is 68.3993 Tg C, accounting for 1.6286% of the total forest carbon storage. This implies the important contribution of moso bamboo in regional or national carbon budget.  相似文献   

20.
We studied organic components in the X106 sediment core (length 130.3 cm, water depth 236 m, 50°53′01″N, 100°21′22″E) from Lake Hovsgol to elucidate the biological production, source of organic components, and paleoenvironmental and paleolimnological changes during the last 27 kyr in northwest Mongolia. Total organic carbon (TOC) contents (0.20–0.70%) in the core of the last glacial period increased dramatically and attained 3.16–5.85% in the postglacial period (Holocene), together with the increase of the contribution of terrestrial organic matter. Biological production (both terrestrial and aquatic production) based on the TOC contents in the Holocene was 14 times higher than that in the last glacial period. The B?lling-Aller?d warm period and Younger Dryas cool period were both observed at depths of 55–50 cm (ca. 15–13 cal kyr BP) and 50–45 cm (ca. 13–11 cal kyr BP), respectively. We propose here a terrestrial/aquatic index (TAI) for organic matter in lake sediments. The TAI values suggest that terrestrial organic matter in the bottom of the core was less than 10%, increased to 48% in the B?lling-Aller?d warm period, decreased abruptly to 20% in the Younger Dryas cool period, and again increased to 30–40% in the Holocene. Normal-C31 alkane (a biomarker of herbaceous land plants) and n-C18 alkanoic acid (marker of plankton) decreased from the last glacial period to the Holocene, whereas n-C23 alkane and n-C22 alkanoic acid (a marker of higher vascular plants) increased from the last glacial period to the Holocene. Scarce herbaceous plant vegetation, such as Artemisia spp. of the lake basin in the last glacial period, changed into an abundance of higher woody plant vegetation (e.g., Pinus spp., Betula spp. and/or Larix spp.) in the Holocene. Stanol/sterol ratios suggest that relatively high oxygen tension of the lake bottom in ca. 27–22 cal kyr BP decreased from this age to the present, though benthic organisms are still abundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号