首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staphylococcus aureus is a commensal organism and a frequent cause of skin and soft tissue infections, which can progress to serious invasive disease. This bacterium uses its fibronectin binding proteins (FnBPs) to invade host cells and it has been hypothesised that this provides a protected niche from host antimicrobial defences, allows access to deeper tissues and provides a reservoir for persistent or recurring infections. FnBPs contain multiple tandem fibronectin-binding repeats (FnBRs) which bind fibronectin with varying affinity but it is unclear what selects for this configuration. Since both colonisation and skin infection are dependent upon the interaction of S. aureus with keratinocytes we hypothesised that this might select for FnBP function and thus composition of the FnBR region. Initial experiments revealed that S. aureus attachment to keratinocytes is rapid but does not require FnBRs. By contrast, invasion of keratinocytes was dependent upon the FnBR region and occurred via similar cellular processes to those described for endothelial cells. Despite this, keratinocyte invasion was relatively inefficient and appeared to include a lag phase, most likely due to very weak expression of α(5)β(1) integrins. Molecular dissection of the role of the FnBR region revealed that efficient invasion of keratinocytes was dependent on the presence of at least three high-affinity (but not low-affinity) FnBRs. Over-expression of a single high-affinity or three low-affinity repeats promoted invasion but not to the same levels as S. aureus expressing an FnBPA variant containing three high-affinity repeats. In summary, invasion of keratinocytes by S. aureus requires multiple high-affinity FnBRs within FnBPA, and given the importance of the interaction between these cell types and S. aureus for both colonisation and infection, may have provided the selective pressure for the multiple binding repeats within FnBPA.  相似文献   

2.
Invasive Staphylococcus aureus infection frequently involves bacterial seeding from the bloodstream to other body tissues, a process necessarily involving interactions between circulating bacteria and vascular endothelial cells. Staphylococcus aureus fibronectin‐binding protein is central to the invasion of endothelium, fibronectin forming a bridge between bacterial fibronectin‐binding proteins and host cell receptors. To dissect further the mechanisms of invasion of endothelial cells by S. aureus, a series of truncated FnBPA proteins that lacked one or more of the A, B, C or D regions were expressed on the surface of S. aureus and tested in fibronectin adhesion, endothelial cell adhesion and invasion assays. We found that this protein has multiple, substituting, fibronectin‐binding regions, each capable of conferring both adherence to fibronectin and endothelial cells, and endothelial cell invasion. By expressing S. aureus FnBPA on the surface of the non‐invasive Gram‐positive organism Lactococcus lactis, we have found that no other bacterial factor is required for invasion. Furthermore, we have demonstrated that, as with other cell types, invasion of endothelial cells is mediated by integrin α5β1. These findings may be of relevance to the development of preventive measures against systemic infection, and bacterial spread in the bacteraemic patient.  相似文献   

3.
Entry of Staphylococcus aureus into the bloodstream can lead to metastatic abscess formation and infective endocarditis. Crucial to the development of both these conditions is the interaction of S. aureus with endothelial cells. In vivo and in vitro studies have shown that the staphylococcal invasin FnBPA triggers bacterial invasion of endothelial cells via a process that involves fibronectin (Fn) bridging to α5β1 integrins. The Fn-binding region of FnBPA usually contains 11 non-identical repeats (FnBRs) with differing affinities for Fn, which facilitate the binding of multiple Fn molecules and may promote integrin clustering. We thus hypothesized that multiple repeats are necessary to trigger the invasion of endothelial cells by S. aureus. To test this we constructed variants of fnbA containing various combinations of FnBRs. In vitro assays revealed that endothelial cell invasion can be facilitated by a single high-affinity, but not low-affinity FnBR. Studies using a nisin-inducible system that controlled surface expression of FnBPA revealed that variants encoding fewer FnBRs required higher levels of surface expression to mediate invasion. High expression levels of FnBPA bearing a single low affinity FnBR bound Fn but did not invade, suggesting that FnBPA affinity for Fn is crucial for triggering internalization. In addition, multiple FnBRs increased the speed of internalization, as did higher expression levels of FnBPA, without altering the uptake mechanism. The relevance of these findings to pathogenesis was demonstrated using a murine sepsis model, which showed that multiple FnBRs were required for virulence. In conclusion, multiple FnBRs within FnBPA facilitate efficient Fn adhesion, trigger rapid bacterial uptake and are required for pathogenesis.  相似文献   

4.
We recently described adhesion to and invasion of bovine mammary gland cells by Staphylococcus aureus in vitro. Here, we show that the levels of adhesion and invasion are dependent on the bacterial growth phase and are controlled by the agr locus. Incubation of exponential growth phase cells of S. aureus with mammary gland cells resulted in bacterial cell clumping. Strains of S. aureus deficient in expression of the fibronectin binding proteins (FnBPA and FnBPB) failed to clump and their ability to adhere to and to invade the bovine mammary gland cells is strongly reduced. This indicates that the fibronectin binding proteins are essential for S. aureus adhesion to and invasion of bovine mammary gland cells.  相似文献   

5.
Bacteria that invade human endothelial cells can be efficiently eliminated in phagolysosomes. We investigated the role of vesicle tethering exocyst complex in maturation and function of endothelial cell phagosomes harbouring staphylococci or latex beads. Exocyst complex proteins (Sec5, ‐8, ‐10, Exo70) together with recycling endosome marker Rab11 were detected in vesicles that dynamically interacted and seemingly fused with endothelial cell phagosomes. Knockdown of exocyst proteins Sec8 and Exo70 inhibited the accumulation of Rab11‐positive vesicles at the phagosomes. Furthermore, knockdown of exocyst proteins and Rab11 greatly reduced acidification of phagosomes and significantly diminished the elimination of invaded staphylococci in endothelial cells. The inhibitory effect of Exo70 knockdown on bacterial elimination could be rescued by constitutively active Rab11‐Q70L. Our data suggest that exocyst complex controls the interaction of recycling endocytic vesicles with phagosomes and this process is involved in maturation and functioning of the phagosomes in endothelial cells.   相似文献   

6.
Different biochemical and cytochemical techniques were applied to characterize the sites of localization of thrombospondin in cultured endothelial cells. The results obtained by [35S]methionine labeling, immunoblotting, immunoprecipitation, fluorescence microscopy, ultracytochemistry, immunogold labeling, and silver enhancement experiments revealed that thrombospondin secreted by endothelial cells is structurally organized together with proteoheparan sulfate in spherical granules at the cell surface. These granules are about 100 to 300 nm in size. Heparin or enzymatic degradation with heparitinase, but not with ABC lyase, release thrombospondin from the cell surface. Fibronectin is expressed in the extracellular matrix of endothelial cells in a fibrillar organization, clearly distinct from the punctate pattern of thrombospondin on the cell surface. Furthermore, secreted thrombospondin is highly enriched together with fibronectin and proteoheparan sulfate in cell attachment sites and in cell migration tracks. In cell migration tracks proteoheparan sulfate more clearly resembles the fibrillar distribution pattern of fibronectin, whereas thrombospondin reveals a rather monodisperse pattern. The obtained data suggest preferential sites of interaction between thrombospondin and heparan sulfate proteoglycans on the cell surface and a participation of thrombospondin in cell adhesion and cell migration.  相似文献   

7.
Attachment of microorganisms to host cells is believed to be a critical early step in microbial pathogenesis. The aim of the study was to determine the role of the known glycosaminoglycan (GAG) binding activity of Staphylococcus aureus and coagulase-negative staphylococci (CoNS) in their attachment to six different eukaryotic cell lines. Three staphylococcal species expressing GAG binding capacity—S. aureus, S. epidermidis, and S. hemolyticus—were chosen for investigation. Six different eukaryotic cell lines, endothelial HUVEC and EA. hy 926 cells, epithelial A549 and HeLa S3 cells, fibroblasts HEL Sp 12 and macrophages J774.A1, were included. A modified ELISA with biotinylated bacteria was used for estimating the adhesion of staphylococci to each of the cell lines. Our results showed that staphylococci adhered to each of the cell lines studied, although the binding of CoNS strains to epithelial cells was lower than to the other cells. The attachment to all cell types could be partially decreased by pretreatment of the bacteria with various polysulfated agents (highest inhibition was 60%), as well as by chlorate and heparitinase treatment of the cells. These observations may suggest that at least one mode of staphylococcal attachment utilizes GAG chains present on the surface of virtually all adherent cells. Received: 6 September 2000 / Accepted: 29 December 2000  相似文献   

8.
Staphylococcus aureus infections can result in sepsis and septic shock associated with vascular damage and multiple organ failure. Apoptosis appears to play a key role during sepsis, and the ability of S. aureus to induce apoptosis in endothelial cells might contribute to metastatic infection. In contrast to leukocytes, in human umbilical vein endothelial cells and two endothelial cell lines neither purified alpha-toxin nor staphylococcal supernatants were sufficient to induce apoptosis. Apoptosis induction instead required staphylococcal invasion as well as signals from metabolically active intracellular staphylococci. Only strongly haemolytic and invasive staphylococci, but not non-invasive strains induced apoptosis that was caspase-dependent but Fas-independent. However, only a subgroup of clinical isolates with an invasive and haemolytic phenotype induced apoptosis. Expression of alpha-toxin in a non-haemolytic strain partially restored apoptosis induction, suggesting a role of alpha-toxin as a trigger of apoptosis. Furthermore, infection of endothelial cells with isogenic mutants of various regulator genes revealed that apoptosis induction was dependent on the global regulator agr and the alternative sigma factor sigB, but not influenced by sarA. Together, our results indicate that the ability of S. aureus to induce apoptosis in endothelial cells is determined by multiple virulence factors.  相似文献   

9.
BBK32 is a fibronectin-binding protein from the Lyme disease-causing spirochete Borrelia burgdorferi. In this study, we show that BBK32 shares sequence similarity with fibronectin module-binding motifs previously identified in proteins from Streptococcus pyogenes and Staphylococcus aureus. Nuclear magnetic resonance spectroscopy and isothermal titration calorimetry are used to confirm the binding sites of BBK32 peptides within the N-terminal domain of fibronectin and to measure the affinities of the interactions. Comparison of chemical shift perturbations in fibronectin F1 modules on binding of peptides from BBK32, FnBPA from S. aureus, and SfbI from S. pyogenes provides further evidence for a shared mechanism of binding. Despite the different locations of the bacterial attachment sites in BBK32 compared with SfbI from S. pyogenes and FnBPA from S. aureus, an antiparallel orientation is observed for binding of the N-terminal domain of fibronectin to each of the pathogens. Thus, these phylogenetically and morphologically distinct bacterial pathogens have similar mechanisms for binding to human fibronectin.  相似文献   

10.
The ability of Staphylococcus aureus to invade mammalian cells may explain its capacity to colonize mucosa and to persist in tissues after bacteraemia. To date, the underlying molecular mechanisms of cellular invasion by S. aureus are unknown, despite its high prevalence and difficulties in treatment. Here, we show cellular invasion as a novel function for an S. aureus adhesin, previously implicated solely in attachment. S. aureus , but not S. epidermidis , invaded epithelial 293 cells in a temperature- and F-actin-dependent manner. Formaldehyde-fixed and live bacteria were equally invasive, suggesting that no active bacterial process was involved. All clinical S. aureus isolates analysed, but only a subset of laboratory strains, were invasive. Fibronectin-binding proteins (FnBPs) acted as S. aureus invasins, because: (i) FnBP deletion mutants of invasive laboratory strains lost invasiveness; (ii) expression of FnBPs in non-invasive strains conferred invasiveness; and (iii) the soluble isolated fibronectin-binding domain of FnBP (D1–D4) completely blocked invasion. Integrin α5β1 served as host cell receptor, which interacted with staphylococcal FnBPs through cellular or soluble fibronectin. FnBP-deficient mutants lost invasiveness for epithelial cells, endothelial cells and fibroblasts. Thus, fibronectin-dependent bridging between S. aureus FnBPs and host cell integrin α5β1 is a conserved mechanism for S. aureus invasion of human cells. This may prove useful in developing new therapeutic and vaccine strategies for S. aureus infections.  相似文献   

11.
Binding of the fibronectin-binding protein FnBPA from Staphylococcus aureus to the human protein fibronectin has previously been implicated in the development of infective endocarditis, specifically in the processes of platelet activation and invasion of the endothelium. We recently proposed a model for binding of fibronectin to FnBPA in which the bacterial protein contains 11 potential binding sites (FnBPA-1 to FnBPA-11), each composed of motifs that bind to consecutive fibronectin type 1 modules in the N-terminal domain of fibronectin. Here we show that six of the 11 sites bind with dissociation constants in the nanomolar range; other sites bind more weakly. The high affinity binding sites include FnBPA-1, the sequence of which had previously been thought to be encompassed by the fibrinogen-binding A domain of FnBPA. Both the number and sequence conservation of the type-1 module binding motifs appears to be important for high affinity binding. The in vivo relevance of the in vitro binding studies is confirmed by the presence of antibodies in patients with S. aureus infections that specifically recognize complexes of these six high affinity repeats with fibronectin.  相似文献   

12.
The internalization of Staphylococcus aureus by cultured human umbilical vein endothelial cells was recently shown to induce apoptosis. We examined the role of alpha-toxin, a major pore-forming toxin secreted by S. aureus, in causing apoptosis in vitro. Purified alpha-toxin, at sublytic concentrations, induced apoptosis in endothelial cell monolayers. Comparisons of two alpha-toxin (hla)-positive S. aureus strains and their isogenic hla-deficient mutants in the invasion assay of endothelial cells demonstrated that the capacity to produce alpha-toxin was associated with a greater propensity for apoptosis in endothelial cells. These results demonstrate for the first time that expression of alpha-toxin during endothelial cell invasion by S. aureus enhances apoptosis.  相似文献   

13.
Staphylococcus aureus is the primary etiological agent of several human diseases. S. aureus has classically been considered an extracellular pathogen; however, recent evidence indicates that S. aureus invades and persists in non-professional phagocytes. Experiments demonstrate that actin microfilaments, microtubules, receptor-mediated endocytosis, and protein tyrosine kinases play important roles in the uptake of S. aureus. Fibronectin-binding proteins and beta-integrins are implicated as critical cell surface molecules associated with internalization of S. aureus by non-phagocytic cells. Following invasion of eukaryotic cells, S. aureus induces the release of cytokines that have the potential to exacerbate disease and induce apoptosis. Finally, S. aureus has the ability to persist inside host cells as small colony variants, a phenotype associated with persistent and recurrent infections.  相似文献   

14.
Von-Willebrand factor (vWF) is a highly multimerized hemostatic glycoprotein that is stored in endothelial Weibel-Palade bodies (WPB) and secreted upon cell stimulation to act in recruiting platelets to sites of vessel injury. Only fully matured multimeric vWF represents an efficient anchor for platelets, and endothelial cells have developed mechanisms to prevent release of immature vWF. Full maturation of vWF occurs within WPB following their translocation from a perinuclear site of emergence at the trans-Golgi network (TGN) to the cell periphery. The WPB-associated small GTPase Rab27a is involved in restricting immature WPB exocytosis and we searched for links between Rab27a and the actin cytoskeleton that could anchor WPB inside endothelial cells until they are fully matured. We here identify myosin Va as such link. Myosin Va forms a tripartite complex with Rab27a and its effector MyRIP and depletion of or dominant-negative interference with myosin Va leads to an increase in the ratio of perinuclear to more peripheral WPB. Concomitantly, myosin Va depletion results in an elevated secretion of less-oligomeric vWF from histamine-stimulated endothelial cells. These results indicate that a Rab27a/MyRIP/myosin Va complex is involved in linking WPB to the peripheral actin cytoskeleton of endothelial cells to allow full maturation and prevent premature secretion of vWF.  相似文献   

15.
Staphylococcus aureus invades a variety of mammalian cells and escapes from the endosome to multiply in the cytoplasm. We had previously hypothesized that the molecular events leading to escape of S. aureus from the endosome involved the Agr virulence factor regulatory system. In this report we demonstrate that temporal changes in intracellular activation of the Agr regulon correlates with expression of membrane active toxins. Also, the initial expression of Agr by even small numbers of staphylococci resulted in the permeabilization of the endosomal membrane and the eventual escape of bacteria into the cytoplasm by 3 h post invasion. After Agr downregulation, a second peak of expression coincided with increased permeability of the host cell membrane. In contrast to the parental strain, an Agr-mutant was unable to escape into the cytoplasm and was observed in intact endosomes as late as 5 h post invasion. These data provide evidence that staphylococcal virulence factor production during invasion of host cells is mediated by an Agr-dependent process that is most accurately described in the context of diffusion sensing.  相似文献   

16.
During invasion of nonphagocytic cells by Trypanosoma cruzi (T. cruzi), host cell lysosomes are recruited to the plasma membrane attachment site followed by lysosomal enzyme secretion. The membrane trafficking events involved in invasion have not been delineated. We demonstrate here that T. cruzi invasion of nonphagocytic cells was completely abolished by overexpression of a dominant negative mutant of dynamin. Likewise, overexpression of a dominant negative mutant of Rab5, the rate-limiting GTPase for endocytosis, resulted in reduced infection rates compared with cells expressing Rab5 wild-type. Moreover, cells expressing the activated mutant of Rab5 experienced higher infection rates. A similar pattern was also observed when Rab7-transfected cells were examined. Confocal microscopy experiments showed that parasites colocalized with green fluorescent protein-Rab5-positive early endosomes after 5 min of invasion. These data clearly indicate that newly forming T. cruzi phagosomes first interact with an early endosomal compartment and subsequently with other late component markers before lysosomal interaction occurs.  相似文献   

17.
Staphylococcus aureus is a leading cause of infective endocarditis (IE). Platelet activation promoted by S. aureus resulting in aggregation and thrombus formation is an important step in the pathogenesis of IE. Here, we report that the fibrinogen/fibronectin-binding proteins FnBPA and FnBPB are major platelet-activating factors on the surface of S. aureus from the exponential phase of growth. Truncated derivatives of FnBPA, presenting either the fibrinogen-binding A domain or the fibronectin-binding BCD region, each promoted platelet activation when expressed on the surface of S. aureus or Lactococcus lactis, indicating two distinct mechanisms of activation. FnBPA-promoted platelet activation is mediated by fibrinogen and fibronectin bridges between the A domain and the BCD domains, respectively, to the low affinity form of the integrin GPIIb/IIIa on resting platelets. Antibodies recognizing the FnBPA A domain or the complex between the FnBPA BCD domains and fibronectin were essential for activation promoted by bacteria expressing the A domain or the BCD domain respectively. Activation was inhibited by a monoclonal antibody (IV-3) specific for the FcgammaRIIa IgG receptor on platelets. We propose that the activation of quiescent platelets by bacteria expressing FnBPs involves the formation of a bridge between the bacterial cell and the platelet surface by (i) fibronectin and fibrinogen interacting with the low affinity form of GPIIb/IIIa and (ii) by antibodies specific to FnBPs that engage the platelet Fc receptor FcgammaRIIa. Platelet activation by S. aureus clinical IE isolates from both the exponential and stationary phases of growth was completely inhibited by monoclonal antibody IV-3 suggesting that the IgG-FcgammaRIIa interaction is of fundamental importance for platelet activation mediated by this organism. This suggests new avenues for development of therapeutics against vascular infections.  相似文献   

18.
Vasculitis, a recognized complication of staphylococcal-endovascular infections, may result in part, from the expression of FcR by Staphylococcus aureus-infected endothelial cells. FcR were measured using [51]Cr labeled SRBC preincubated with rabbit anti-SRBC IgG. FcR were not detected on uninfected endothelial cells, but were demonstrated on S. aureus infected cells using IgG, but not IgM labeled SRBC. FcR expression was dependent on the initial bacterial density (greater than or equal to 8 x 10(7) cfu/ml) and on phagocytosis of the staphylococci, but not on new protein synthesis. IgG labeled SRBC binding was blocked by aggregated IgG but not IgM. SRBC coated with the F(ab')2 portion of IgG did not bind, thus confirming that FcR were specifically involved in this interaction. FcR are expressed after S. aureus invasion of human endothelial cells and may contribute to the vasculitis which often accompanies S. aureus-endovascular infections.  相似文献   

19.
20.
During malignant invasion tumor cells establish contact with extracellular matrix proteins, including fibrillar collagen. In addition to providing a physical barrier against invasion, fibrillar collagen also restricts cell proliferation. It has been assumed that the growth regulatory activity of fibrillar collagen is the result of an indirect restrictive effect on cell spreading and cytoskeletal organization. Here we provide evidence for a direct inhibitory effect of fibrillar collagen on proliferation of human melanoma and fibrosarcoma cells that involves activation of the tyrosine kinase discoidin domain receptor 2 and is independent of effects on cell spreading. Cells plated in the presence of fibrillar collagen were growth arrested in the G0/G1 phase of the cell cycle. However treatment with the tyrosine kinase inhibitor genistein, down-regulation of discoidin domain receptor 2, or collagen deglycosylation that prevents discoidin domain receptor 2 activation allowed cells to enter the cell cycle in the presence of fibrillar collagen without a requirement for spreading and actin organization. Our data provide evidence for a novel direct mechanism by which cell contact with fibrillar collagen restricts proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号