首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences in the carbohydrate composition were revealed among spores of fungi belonging to Zygomycetes, Ascomycota, Basidiomycota, and Oomycota, part of the novel kingdom Chromista. It was shown for the first time that Phytophthora infestans contains arabitol in addition to glucose and trehalose. Sucrose was detected in Pleurotus ostreatus basidiospores. It was established that Blakeslea trispora stylospores contain inositol. The dependence of the spore carbohydrate composition on the temperature of the habitat of the corresponding species is discussed. It was shown that the cytosol of the conidia is dominated by trehalose and inositol under hypothermic conditions and by mannitol and glucose under hyperthermic conditions. Neomycota and Eomycota were shown to differ in their responses to stress (starvation), which correlated with the differences in the carbohydrate composition of the spore cytosols. Assuming that cytosol carbohydrates perform a protective function, we explain the higher viability of conidia compared to stylo- and sporangiospores.  相似文献   

2.
The effect of temperature stress on the cytosol carbohydrate composition of fungi belonging to various systematic groups was investigated. InMucorales representatives (subkingdomEomycota, phylumArchetnycota, classZygomycetes), adaptation to hypo- and hyperthermia occurs via the regulation of trehalose synthesis, although inositol is also involved in these processes inBlakeslea trispora. InAscomycota (subkingdomNeomycota), oversynthesis of mannitol and glycerol occurs under hypothermia, whereas oversynthesis of trehalose and inositol takes place under hyperthermia.Basidiomycota (subkingdomNeomycota) use two pathways of biochemical adaptation, depending on the cytosol carbohydrate composition. In the absence of sucrose, glycerol and arabitol are involved in the adaptation to hyperthermia; trehalose accumulates under hypothermic conditions (type I of regulation). Type II regulation (revealed inPleurotus ostreatus) involves sucrose rather than glycerol or arabitol. The data obtained are discussed in terms of fungal systematics and phylogeny.  相似文献   

3.
It is shown that the rate of sporogenesis, the appearance of low-molecular-weight thiols, and the activation of carbohydrate synthesis in spores adversely affected the viability of Aspergillus niger conidia during storage. Conversely the prevalence of trehalose over mannitol and the absence of glycerol, erythritol, and glucose in the carbohydrate composition facilitated the viability of conidia. The data obtained are discussed with regard to the biochemical criteria that may be used to characterize the quiescent state of fungi and retaining the viability of the inoculum.  相似文献   

4.
The effect of temperature stress on the cytosol carbohydrate composition of fungi belonging to various systematic groups was investigated. In Mucorales representatives (subkingdom Eomycota, phylum Archemycota, class Zygomycetes), adaptation to hypo- and hyperthermia occurs via the regulation of trehalose synthesis, although inositol is also involved in these processes in Blakeslea trispora. Basidiomycota (subkingdom Neomycota) use two pathways of biochemical adaptation, depending on the cytosol carbohydrate composition. In the absence of sucrose, glycerol and arabitol are involved in the adaptation to hyperthermia; trehalose accumulates under hypothermic conditions (type I of regulation). Type II regulation (revealed in Pleurotus ostreatus) involves sucrose rather than glycerol or arabitol. The data obtained are discussed in terms of fungal systematics and phylogeny.  相似文献   

5.
It is shown that the rate of sporogenesis, the appearance of low-molecular-weight thiols, and the activation of carbohydrate synthesis in spores adversely affected the viability of Aspergillus niger conidia during storage. Conversely, the prevalence of trehalose over mannitol and the absence of glycerol, erythritol, and glucose in carbohydrate composition facilitated viability of conidia. The data obtained are discussed in regard to the biochemical criteria that may be used to characterize quiescent state of fungi and retaining the viability of the inoculum.  相似文献   

6.
Sporangiospores of Blakeslea trispora are in a state of exogenous dormancy, and water is the key factor controlling their germination. A wide range of carbohydrates, ammonium salts, and yeast extract had a weak stimulating effect (less than 50%) on spore germination, whereas amino acids could significantly inhibit this process. Cultivation of B. trispora on sporogenous sucrose- and trehalose-containing media (S and T spores, respectively) resulted in significant changes in spore formation, as well as in the chemical composition of spores and their viability. In the presence of trehalose, the amount of spores increased twofold; spore viability during storage increased as well. All changes in the carbohydrate composition of the cytosol and in the composition of the spore membrane lipids indicated that the dormancy of T spores was deeper than that of S spores, which has a favorable effect on their viability.  相似文献   

7.
This study evaluates osmolality of a submerged conidia-producing medium in relation to the following spore characteristics: yield, morphology (dimensions and cell wall structure), chemical properties of cell wall surfaces (charge, hydrophobicity, and lectin binding), cytoplasmic polyols and trehalose, and performance (drying stability and pathogenicity). Spore production was increased by the addition of up to 150 g l?1 polyethylene glycol 200 (PEG). Spores from high osmolality medium (HOM spores) containing 100 g l?1 PEG had thin cell walls and dimensions more similar to blastospores than submerged conidia or aerial conidia. However, a faint electron-dense layer separating primary and secondary HOM spores’ cell walls was discernable by transmission electron microscopy as found in aerial and submerged conidia but not found in blastospores. HOM spores also appeared to have an outer rodlet layer, unlike blastospores, although it was thinner than those observed in submerged conidia. HOM spores’ surfaces possessed hydrophobic microsites, which was further evidence of the presence of a rodlet layer. In addition, HOM spores had concentrations of exposed N-acetyl-β-d-glucosaminyl residues intermediate between blastospores and submerged conidia potentially indicating a masking of underlying cell wall by a rodlet layer. All spore types had exposed α-d-mannosyl and/or α-d-glucosyl residues, but lacked oligosaccharides. Similar to blastospores, HOM spores were less anionic than submerged conida. Although HOM spores had thin cell walls, they were more stable to drying than blastospores and submerged conidia. Relative drying stability did not appear to be the result of differences in polyol or trehalose concentrations, since trehalose concentrations were lower in HOM spores than submerged conidia and polyol concentrations were similar between the two spore types. HOM spores had faster germination rates than submerged conidia, similar to blastospores, and they were more pathogenic to Schistocerca americana than submerged conidia and aerial conidia.  相似文献   

8.
Summary Sonic oscillation was used for the purpose of obtaining clean, chemically intact cell walls. The rate of disruption was determined for cells ofHanseniaspora uvarum andSaccharomyces cerevisiae. The carbohydrate fractions of cell walls ofHanseniaspora uvarum, H. valbyensis, Kloeckera apiculata, Saccharomycodes ludwigii andSaccharmyces cerevisiae were shown to be similar. Chromatography of cell wall hydrolysates of all these species demonstrated that glucose and mannose were the only sugars present (in about equal amounts) besides traces of glucosamine. The cell walls ofH. uvarum contained 78.1 per cent carbohydrates, 7 per cent protein and approximately 0.05 per cent of chitin. Fractionation of the polysaccharides lead to a recovery of 83.3 per cent of the carbohydrates present (30.4 per cent glucan and 34.9 per cent mannan). Saccharomyces cerevisiae cell walls were found to have a carbohydrate content of 82.8 per cent, 6.5 per cent protein and a trace of chitin (0.04 per cent). Nadsonia elongata contained a relatively large amount of chitin (ca. 5 per cent) and lacked mannan in its cell walls. It was concluded thatHanseniaspora andSaccharomycodes are closely related to theSaccharomyceteae but they have little in common with species ofNadsonia.  相似文献   

9.
The multifunctional regulator VelB physically interacts with other velvet regulators and the resulting complexes govern development and secondary metabolism in the filamentous fungus Aspergillus nidulans. Here, we further characterize VelB’s role in governing asexual development and conidiogenesis in A. nidulans. In asexual spore formation, velB deletion strains show reduced number of conidia, and decreased and delayed mRNA accumulation of the key asexual regulatory genes brlA, abaA, and vosA. Overexpression of velB induces a two-fold increase of asexual spore production compared to wild type. Furthermore, the velB deletion mutant exhibits increased conidial germination rates in the presence of glucose, and rapid germination of conidia in the absence of external carbon sources. In vivo immuno-pull-down analyses reveal that VelB primarily interacts with VosA in both asexual and sexual spores, and VelB and VosA play an inter-dependent role in spore viability, focal trehalose biogenesis and control of conidial germination. Genetic and in vitro studies reveal that AbaA positively regulates velB and vosA mRNA expression during sporogenesis, and directly binds to the promoters of velB and vosA. In summary, VelB acts as a positive regulator of asexual development and regulates spore maturation, focal trehalose biogenesis and germination by interacting with VosA in A. nidulans.  相似文献   

10.
《Fungal biology》2023,127(3):909-917
Xerophilic fungi accumulate a large amount of glycerol in the cytosol to counterbalance the external osmotic pressure. But during heat shock (HS) majority of fungi accumulate a thermoprotective osmolyte trehalose. Since glycerol and trehalose are synthesized in the cell from the same precursor (glucose), we hypothesised that, under heat shock conditions, xerophiles growing in media with high concentrations of glycerol may acquire greater thermotolerance than those grown in media with high concentrations of NaCl. Therefore, the composition of membrane lipids and osmolytes of the fungus Aspergillus penicillioides, growing in 2 different media under HS conditions was studied and the acquired thermotolerance was assessed. It was found that in the salt-containing medium an increase in the proportion of phosphatidic acids against a decrease in the proportion of phosphatidylethanolamines is observed in the composition of membrane lipids, and the level of glycerol in the cytosol decreases 6-fold, while in the medium with glycerol, changes in the composition of membrane lipids are insignificant and the level of glycerol is reduced by no more than 30%. In the mycelium trehalose level have increased in both media, but did not exceed 1% of dry weight. However, after exposure to HS the fungus acquires greater thermotolerance in the medium with glycerol than in the medium with salt. The data obtained indicate the interrelation between changes in the composition of osmolytes and membrane lipids in the adaptive response to HS, as well as the synergistic effect of glycerol and trehalose.  相似文献   

11.
The current knowledge of trehalose biosynthesis under stress conditions is incomplete and needs further research. Since trehalose finds industrial and pharmaceutical applications, enhanced accumulation of trehalose in bacteria seems advantageous for commercial production. Moreover, physiological role of trehalose is a key to generate stress resistant bacteria by metabolic engineering. Although trehalose biosynthesis requires few metabolites and enzyme reactions, it appears to have a more complex metabolic regulation. Trehalose biosynthesis in bacteria is known through three pathways – OtsAB, TreYZ and TreS. The interconnections of in vivo synthesis of trehalose, glycogen or maltose were most interesting to investigate in recent years. Further, enzymes at different nodes (glucose‐6‐P, glucose‐1‐P and NDP‐glucose) of metabolic pathways influence enhancement of trehalose accumulation. Most of the study of trehalose biosynthesis was explored in medically significant Mycobacterium, research model Escherichia coli, industrially applicable Corynebacterium and food and probiotic interest Propionibacterium freudenreichii. Therefore, the present review dealt with the trehalose metabolism in these bacteria. In addition, an effort was made to recognize how enzymes at different nodes of metabolic pathway can influence trehalose accumulation.  相似文献   

12.
The type of dormancy and conditions necessary for germination of Agaricus bisporus basidiospores were studied. Basidiospores failed to germinate on starvation agar and required the presence of carbon and nitrogen sources (asparagine and/or glucose) in the medium. Upon 3-week storage, basidiospores germinated after 4–5 days. Heat shock (20 min at 45°C) and decreased temperature facilitated activation of germination. Heterocyclic compounds stimulating germination of endogenously dormant spores, such as furfural, failed to activate germination. The data obtained suggested an endogenous dormancy of A. bisporus basidiospores differing from zygospores of Mucorales. Basidiospores contained 17–19% lipids with a composition of fatty acids differing from those of the pileus and stipe of the fruiting body. The soluble carbohydrates of the cytosol amounted to 12% dry spore weight and consisted of mannitol (74%) and trehalose (26%). Unlike basidiospores stored at 2°C, basidiospores stored for 5 months at 20°C lost their ability to germinate, which correlated with a decrease in the content of trehalose.  相似文献   

13.
14.
Comparative composition of lipids and cytosol soluble carbohydrates at different ambient pH values was studied for two obligately alkaliphilic fungi (Sodiomyces magadii and S. alkalinus) and for two alkalitolerant ones (Acrostalagmus luteoalbus and Chordomyces antarcticus). The differences and common patterns were revealed in responses to pH stress for the fungi with different types of adaptation to ambient pH. While trehalose was one of the major cytosol carbohydrates in alkaliphilic fungi under optimal growth conditions (pH 10.2), pH decrease to 7.0 resulted in doubling its content. In alkalitolerant fungi trehalose was a minor component and its level did not change significantly at different pH. In alkalitolerant fungi, arabitol and mannitol were the major carbohydrate components, with their highest ratio observed under alkaline conditions and the lowest one, under neutral and acidic conditions. In alkaliphiles, significant levels of arabitol were revealed only under alkaline conditions, which indicated importance of trehalose and arabitol for alkaliphily. Decreased pH resulted in the doubling of the proportion of phosphatidic acids among the membrane lipids, which was accompanied by a decrease in the fractions of phosphatidylcholines and sterols. Alkalitolerant fungi also exhibited a decrease in sterol level at decreased pH, but against the background of increased proportion of one of phospholipids. Decreased unsaturation degree in the fatty acids of the major phospholipids was a common response to decreased ambient pH.  相似文献   

15.
The antifungal activity of substances interfering with the function and biogenesis of mitochondria was studied. Strict anaerobiosis, cyanide, azide, oligomycin, bongkrekic acid and ethidium bromide were found to prevent spore germination ofAspergillus niger andPenicillium italicum in liquid germination medium. The effect of azide, oligomycin and ethidium bromide was fungicidal. Cyanide and azide completely inhibited the incorporation of14C-leucine and14C-uracil into germinating conidia ofA. niger. Oligomycin and ethidium bromide reduced the extent of incorporation of both precursors in the first few hours of conidial germination and at later stages stopped it completely. The inhibition of both spore germination and macromolecules synthesis during the germination ofA. niger conidia were in relation to the specific inhibitory effect of the agents on respiratory activity of dormant conidia and mycelial cells. The results indicate that both the function of mitochondrial genetic and protein synthesizing systems and the function of oxidative phosphorylation are essential for normal spore germination and fungal growth.  相似文献   

16.
We previously isolated three chitin synthase genes (chsA, chsB, andchsC) fromAspergillus nidulans. In the present work, we describe the isolation and characterization of another chitin synthase gene, namedchsD, fromA. nidulans. Its deduced amino acid sequence shows 56.7% and 55.9% amino acid identity, respectively, with Cal1 ofSaccharomyces cerevisiae and Chs3 ofCandida albicans. Disruption ofchsD caused no defect in cell growth or morphology during the asexual cycle and caused no decrease in chitin content in hyphae. However, double disruption ofchsA andchsD caused a remarkable decrease in the efficiency of conidia formation, while double disruption ofchsC andchsD caused no defect. Thus it appears thatchsA andchsD serve redundant functions in conidia formation.  相似文献   

17.
Aspergillus nidulans andPenicillium chrysogenum are related fungi that reproduce asexually by forming multicellular conidiophores and uninucleate conidia. InA. nidulans, spore maturation is controlled by thewetA (AwetA) regulatory gene. We cloned a homologous gene (PwetA) fromP. chrysogenum to determine if spore maturation is regulated by a similar mechanism in this species. ThePwetA andAwetA genes are similar in structure and functional organization. The inferred polypeptides share 77% overall amino acid sequence similarity, with several regions having > 85% similarity. The genes also had significant, local sequence similarities in their 5 flanking regions, including conserved binding sites for the product of the regulatory geneabaA.PwetA fully complemented anA. nidulans wetA deletion mutation, demonstrating thatPwetA and its 5 regulatory sequences function normally inA. nidulans. These results indicate that the mechanisms controlling sporulation inA. nidulans andP. chrysogenum are evolutionarily conserved.  相似文献   

18.
The effect of gene knockout on metabolism in the pflA, pflB, pflC, and pflD mutants of Escherichia coli was investigated. Batch cultivations of the pfl mutants and their parent strain were conducted using glucose as a carbon source. It was found that pflA and pflB mutants, but not pflC and pflD mutants, produced large amounts of d-lactate from glucose under the microaerobic condition, and the maximum yield was 73%. In order to investigate the metabolic regulation mechanism, we measured enzyme activities for the following eight enzymes: glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), pyruvate kinase, lactate dehydrogenase (LDH), phosphoenolpyruvate carboxylase, acetate kinase, and alcohol dehydrogenase. Intracellular metabolite concentrations of glucose 6-phosphate, fructose 1,6-bisphosphate, phosphoenolpyruvate, pyruvate, acetyl coenzyme A as well as ATP, ADP, AMP, NADH, and NAD+ were also measured. It was shown that the GAPDH and LDH activities were considerably higher in pflA and pflB mutants, which implies coupling between NADH production and consumption between the two corresponding reactions. The urgent energy requirement was shown by the lower ATP/AMP level due to both oxygen limitation and pfl gene knockout, which promoted significant stepping-up of glycolysis when using glucose as a carbon source. It was shown that the demand for energy is more important than intracellular redox balance, thus excess NADH produced through GAPDH resulted in a significantly higher intracellular NADH/NAD+ ratio in pfl mutants. Consequently, the homolactate production was achieved to meet the requirements of the redox balance and the energy production through glycolysis. The effect of using different carbon sources such as gluconate, pyruvate, fructose, and glycerol was investigated.  相似文献   

19.
Arbuscular mycorrhizal (AM) fungi on Japanese semi-natural grasslands were investigated at three adjacent sites with different vegetation. The predominant grasses at the three sites were 1)Pleioblastus chino, 2)Miscanthus sinensis andArundinella hirta (M. sinensis/A. hirta), and 3)Zoysia japonica, respectively. The degree of colonization was higher inM. sinensis/A. hirta than inP. chino andZ. japonica. AM fungi were recovered by spore extraction and by pot cultures started from soil inoculum or from transplanting of field plants. Total spore number obtained by the spore extraction method was highest in the rhizosphere ofM. sinensis/A. hirta and lowest in that ofP. chino. AGlomus sp. resemblingG. geosporum predominated in association withM. sinensis/A. hirta andP. chino. FromZ. japonica, three species,Acaulospora gerdemannii, Glomus leptotichum, and a species resemblingG. clarum, were isolated by pot culture from soil and two species,A. longula andScutellospora cerradensis, by pot culture from transplanting ofZ. japonica. FromM. sinensis/A. hirta, one species,A. longula, was found by pot culture from soil. FromP. chino, no AM fungus was detected by either method. Single-spore culture confirmed thatG. leptotichum andA. gerdemannii are conspecific.  相似文献   

20.
An analysis of metabolism by measurement of respiratory quotient values indicates that reduced substances, such as lipids and/or amino acids, are the primary respiratory substrates of dormant Dictyostelium discoideum spores. The spores appear to consume both reduced substances and carbohydrates during the swelling stage of germination. The respiration of emerged myxamoebae is again dominated by the consumption of reduced substances. The pool of trehalose remains largely intact during heat-induced activation and also during postactivation lag. The initiation of spore swelling is accompanied by a decrease in the trehalose pool; the majority of trehalose is consumed before late spore swelling. Upon placing heat-activated spores under restrictive environmental conditions, swelling and trehalose hydrolysis are both prevented. Release from these conditions results in rapid swelling and hydrolysis of trehalose. Trehalase, the enzyme responsible for trehalose breakdown, is present in dormant spores at basal levels. This preformed enzyme is responsible for the hydrolysis of trehalose even though there is a significant increase in trehalase activity with the emergence of myxamoebae. RNA and protein synthesis inhibitors do not prevent trehalose hydrolysis or spore swelling. It is concluded that oxidation of reduced substances occurs in dormant, activated, and swollen spores, as well as in emerged myxamoebae of D. discoideum. Carbohydrate utilization dominates over the oxidation of reduced substances only during the swelling stage of germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号