首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
光呼吸对光合过程中磷代谢的影响   总被引:3,自引:0,他引:3  
与光呼吸受抑制的 2%O_2浓度下相比,在 21%O_2浓度下.离体甘薯叶细胞光合作用最适介质无机磷浓度较低.另外,在21%O_2浓度下,降低甘薯叶细胞介质 NaHCO_3浓度,叶细胞光下吸收介质~(32)Pi的量减少;降低完整菠菜叶绿体介质 NaHCO_3浓度,乙醇酸形成相对加强,而介质~(32)Pi掺入到有机磷化合物的量则相对减少.这些结果表明,有利于光呼吸的条件,可降低光合对外界Pi的需求量.  相似文献   

2.
缺磷对甘薯离体叶细胞光合作用和光呼吸的影响...   总被引:5,自引:0,他引:5  
  相似文献   

3.
光呼吸途径及其功能   总被引:1,自引:0,他引:1  
光呼吸是C3植物体内重要的代谢过程,是光合作用研究的热点之一。本文阐述了光呼吸的正常代谢途径及乙醛酸代谢的交替途径,交替途径的功能,及途径中关键酶的生物 学特性。就光呼吸在减轻逆境伤害、减缓叶绿素的降解、驱动卡尔文循环、参与三羧酸循环、氮素代谢、蛋白质积累以及PSⅠ和PSⅡ之间的状态转换等生物学功能进行了综述。  相似文献   

4.
光呼吸(photorespiration)是绿色植物在光下吸收氧气并释放CO2的过程。C3植物光呼吸可消耗25%光合产物,故合理改良光呼吸可望提高植物的光合效率。筛选与利用光呼吸突变体是研究光呼吸代谢及其功能的最为有效的途径。该文对光呼吸代谢途径、光呼吸突变体的筛选以及研究进展进行综述,以期为深入探讨植物光呼吸的生物学功能及进行植物分子改良提供帮助。  相似文献   

5.
自50年代 Decker 发现光呼吸后的一段时间里,有些学者认为 C_4植物是非光呼吸型的。70年代以后,越来越多的人证明 C_4植物是有光呼吸的。本文报道我们近年来对 C_4植物光呼吸测定的结果。  相似文献   

6.
水稻生育过程中,RuBP羧化酶活性与光合速率、RuBP加氧酶活性与光呼吸速率、RuBP羧化酶活性与加氢酶活性以及光合速率与光呼吸速率之间是相关的。籼型品种与粳型品种间酶活性的高低及光合、光呼吸速率的高低基本一致,籼型三系杂交稻(F1)无明显的光合优势。酶的羧化活性的高低只在一定范围内与光合速率的高低平行。在正常生育条件下,酶蛋白的数量不是水稻光合速率的限制因子。  相似文献   

7.
本文根据光合作用和光呼吸途径能量代谢,通过改变外界CO2和O2浓度,计算卡尔文循环固定的CO2和光呼吸消耗的O2。结果表明,可以通过3种方法计算。方法1,测定在CO2饱和点(A)和正常CO2(A')浓度下吸收的CO2,得出光呼吸消耗的O2为:18/19(A-A'),卡尔文循环固定的CO2为:1/19(6A+13A'+19Rd)。方法2,测定在不含O2的空气中(O)和正常O2(O’)浓度下释放的O2,得出光呼吸消耗的O2为:-13/5O-O'-18/5Rd,卡尔文循环固定的CO2为:13/18(O'—O)。方法3,测定在正常情况下吸收的CO2(A)和释放的O2(O'),得出光呼吸消耗的O2为:18(O'—A'),卡尔文循环固定的CO2为:6O'-5A'+Rd。测定在CO2饱和点和正常CO2浓度下吸收的CO2计算出水稻光呼吸释放的CO2占光合作用固定的24%-40%。  相似文献   

8.
9.
光呼吸途径及其功能   总被引:16,自引:0,他引:16  
光呼吸是C3植物体内重要的代谢过程,是光合作用研究的热点之一。本文阐述了光呼吸的正常代谢途径及乙醛酸代谢的交替途径,交替途径的功能,及途径中关键酶的生物学特性。就光呼吸在减轻逆境伤害、减缓叶绿素的降解、驱动卡尔文循环、参与三羧酸循环、氮素代谢、蛋白质积累以及PSI和PSⅡ之间的状态转换等生物学功能进行了综述。  相似文献   

10.
植物中草酸积累与光呼吸惭醇酸代谢的关系   总被引:4,自引:0,他引:4  
对几种C3和C4植物中草酸含量及相应的乙醇酸氧化酶活性测定结果表明,叶片光呼吸强度及其着急酶活性大小与草酸积累量没有相关性;植物根中均能积累草酸,但未测出乙醇酸氧化酶活性。烟草根、叶中的草酸含量在不同生长时期差异明显,且二者呈显著正相关(y=2.565lnx+2.137,r=0.749,P〈0.001),说明振中到可能来自叶片。氧化乙醇酸的瓣活性与氧化乙醛酸的酶的活性呈极显著线性正相关(y=0.2  相似文献   

11.
为了探讨大气CO2浓度升高对水华藻类的影响,利用水华蓝藻-拟柱胞藻作为实验材料,研究了CO2浓度升高对其生长生理和光合作用的影响,结果表明CO2浓度升高,导致拟柱胞藻的生物量、最大光合放氧速率、光合效率显著增加。当CO2浓度为700 mg/L以下,暗呼吸速率和光饱和点无明显影响,而CO2浓度为1000 mg/L时,暗呼吸速率和光饱和点显著提高。随着CO2浓度增加,藻细胞光合作用对无机碳的亲和力降低,同时胞外碳酸酐酶活性显著下降。这表明大气CO2浓度的增加,有利于拟柱胞藻的生长和光合,进而增加了水华发生的风险。  相似文献   

12.
PHOTOSYNTHESIS IN VIVO CAN BE LIMITED BY PHOSPHATE SUPPLY   总被引:11,自引:6,他引:5  
  相似文献   

13.
蛋白质修饰剂对盐藻光合作用的影响   总被引:1,自引:0,他引:1  
经蛋白质化学修饰剂N-溴代琥珀酰亚胺(NBS)、丁二酮(BTO)和对-氯汞苯甲酸(ρCMB)处理的盐藻细胞光合速率下降,0.17mmol/L的ρCMB和0.07mmol/L的NBS可完全抑制光合放氧。在藻细胞的可见光(400—700nm)区吸收光谱中,三种修饰剂都降低了整个波段的吸收。在两个主要吸收峰中,678nm吸收值的下降略大于436nm的下降。在紫外光谱区(200—300nm),ρCMB和BTD使原吸收峰(203nm)值明显降低,NBS处理使吸收峰红移13nm。细胞胀破后紫外光谱出现更显著变化,峰位移至223nm(BTD)、250nm(NBS),或至214—237nm而呈一个宽的平台(ρCMB)。紫外差示吸收光谱显示210nm的负峰;随修饰剂浓度增大,负差示峰可移到225nm(NBS)、245.5nm(ρCMB)和212nm(BTD)。  相似文献   

14.
15.
几种生态因子对菹草光合作用的影响   总被引:37,自引:2,他引:37  
本文研究了光照、pH、温度对菹草光合作用的影响。在一定温度条件下,菹草的净产氧量与一定范围的光照强度呈直线相关。菹草的光补偿点随温度的上升而上升。在菹草自然生活的环境中,温度低于30℃时,升温有利于菹草的光合作用。高pH(PH>10.0)下碳源缺乏对菹草的光合作用影响较大。高pH与强光照射的协同作用严重影响菹草的光合作用。水温与氮、磷营养盐不足并非夏季自然水体中菹草死亡的主要原因。而不良光照(水表层光抑制,中、下层光饥饿)和高pH下缺乏光合碳源的协同作用便可能导致菹草夏季死亡。  相似文献   

16.
为了阐明CO2浓度和水环境要素变化对沉水植物生长的影响, 采用室外模拟的方法, 研究了不同磷和CO2浓度条件下苦草叶片(Vallisneria natans)光合生理特征。实验结果表明, 当水体磷浓度处于较高水平时, 苦草叶片荧光参数Vj、Mo降低, 参数ABS/CSo、DIo/CSo、TRo/CSo、RC/CS、PET显著升高, 其他荧光参数则无显著变化; 高浓度的CO2在显著降低苦草叶片Vj、ABS/RC、DIo/RC、ABS/CSo、DIo/CSo的同时, 也显著提高了苦草叶片ψo、φEo、ETo/RC、PIABS、Fv/Fm、PTR、PET的参数值, 而对其他荧光参数无显著影响; 在磷与CO2交互作用方面, 磷与CO2在Vj、Mo、ψo、TRo/CSo、RC/CS和PET处存在显著的交互作用, 其他荧光参数不显著。可见, 磷或CO2浓度变化均能显著影响苦草叶片光合生理状态, 高浓度的CO2可有效改善苦草叶片PSⅡ反应中心光化学性能、电子传递能力及单位有活性反应中心能量的分配, 从而提高苦草叶片的光合能力; 高浓度的磷可在一定程度上改善苦草叶片PSⅡ受、供体状态及电子传递性能。此外, 磷和CO2存在交互作用, 协同影响苦草叶片的光合能力。  相似文献   

17.
Fe3+对浮游颤藻生长和光合作用的影响   总被引:1,自引:0,他引:1  
考察了浓度为0—30mmol/L的范围内,Fe3 对浮游颤藻(Oscillatoria planctonicaWoloszynska)的生长、生化组成和光合作用的影响。结果表明,当Fe3 浓度小于10nmol/L时,浮游颤藻的生长以及叶绿素和蛋白质的合成均受到明显的抑制,对其补铁后这种抑制能够得到一定程度的缓解。当Fe3 浓度达到10mmol/L时,最大生物量与比生长速率分别是不加铁时的3倍和4倍。富铁条件下藻细胞光饱和的光合作用速率(Pm)、暗呼吸速率(Rd)和表观光合作用效率(α)显著大于缺铁条件,而光补偿点Ic及饱和光强Ik则低于缺铁条件。结果显示,铁是浮游颤藻生长的重要限制因子。  相似文献   

18.
19.
高浓度CO_2对极大螺旋藻生长和光合作用的影响   总被引:2,自引:4,他引:2  
以极大螺旋藻作为实验材料 ,研究了高CO2 浓度对极大螺旋藻的生长和光合作用效应 ,结果表明在高光强下 (40 0 μmolm- 2 s- 1 ) ,高浓度CO2 对其生长和光合作用有明显的影响 ,高浓度CO2 培养下 ,螺旋藻的比生长速率是低浓度CO2 培养的 1 2倍 ;而在低光强下 ,高浓度CO2 对其生长和光合作用无明显影响。两种不同CO2 浓度和光强下培养的极大螺旋藻 ,在不同的生长时期 ,分别测定其P -I曲线 ,结果表明低光强下培养的极大螺旋藻 ,在 5d、8d、1 1d ,两者的Ik、α值均无显著差异 ,Pmax在第 5d、1 1d差异不显著 ,但在第 8d有显著差异。而在高光强培养条件下 ,第 8、1 1d通高浓度CO2 培养的极大螺旋藻 ,其Pmax、α值明显大于通低浓度CO2 培养的极大螺旋藻 ,但两者在第 5d无明显差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号