首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the effect of several doses of GLP-1, compared to that of insulin and glucagons, on lipogenesis, lipolysis and cAMP cellular content, in human adipocytes isolated from normal subjects. In human adipocytes, GLP-1 exerts a dual action, depending upon the dose, on lipid metabolism, being lipogenic at low concentrations of the peptide (ED50, 10(-12) M), and lipolytic only at doses 10-100 times higher (ED50, 10(-10) M); both effects are time- and GLP-1 concentration-dependent. The GLP-1 lipogenic effect is equal in magnitude to that of equimolar amounts of insulin; both hormones apparently act synergically, and their respective action is abolished by glucagon. The lipolytic effect of GLP-1 is comparable to that of glucagon, apparently additive to it, and the stimulated value induced by either one is neutralized by the presence of insulin. In the absence of IBMX, GLP-1, at 10(-13) and 10(-12) M, only lipogenic doses, does not modify the cellular content of cAMP, while from 10(-11) M to 10(-9) M, also lipolytic concentrations, it has an increasing effect; in the presence of IBMX, GLP-1 at already 10(-12) M increased the cellular cAMP content. In human adipocytes, GLP-1 shows glucagon- and also insulin-like effects on lipid metabolism, suggesting the possibility of GLP-1 activating two distinct receptors, one of them similar or equal to the pancreatic one, accounting cAMP as a second messenger only for the lipolytic action of the peptide.  相似文献   

2.
The effects of glucagon-like peptide 1 (7-36) amide [GLP-1 (7-36) amide] and glucagon on the release of islet amyloid polypeptide (IAPP), or amylin, from the isolated perfused rat pancreas were studied. In the presence of 5.6 mM glucose, GLP-1 (7-36) amide and glucagon stimulated the release of amylin from the perfused pancreas. The infusion of GLP-1 (7-36) amide at a concentration of 10(-9) M elicited a biphasic release of amylin similar to that of insulin. The cumulative output of amylin induced by 10(-9)M GLP-1 (7-36) amide was significantly higher than that by 10(-9)M glucagon (p less than 0.01). The amylin/insulin molar ratios induced by GLP-1 (7-36) amide and glucagon were about 1% and did not differ significantly. These findings suggest that GLP-1 (7-36) amide and glucagon stimulate the release of amylin from the pancreas and that the concomitant secretion of amylin and insulin might contribute to glucose homeostasis.  相似文献   

3.
M A Simón  C Calle 《Life sciences》1987,41(21):2411-2417
Beta-adrenergic receptors have been purported to act as possible mediators in the lipolytic effect of somatostatin in vivo. Investigations with isolated rat adipocytes studying the lipolytic activity of somatostatin (1.7 x 10(-7) M), glucagon (8.1 x 10(-8 M) and norepinephrine (10(-6) M), have shown that the lipolytic effect stimulated by somatostatin is not altered by 10(-5) M propranolol (beta-antagonist); is significantly enhanced by 10(-5) M isoproterenol (beta-agonist) and is not altered by the addition of 10(-6) M phenoxybenzamine (alpha-antagonist) or 10(-6) M phenylephrine (alpha-agonist). Similar results were found when lipolysis was stimulated by glucagon, whereas the lipolytic effect stimulated by norepinephrine was blocked by propranolol. These results indicate that the direct lipolytic effect of somatostatin on isolated rat adipocytes does not seem to be mediated through mechanisms involved with adrenergic receptors.  相似文献   

4.
The effect of somatostatin on lipolysis was investigated utilizing isolated chicken adipocytes. Somatostatin-14 and -28 inhibited basal lipolysis. This ability to suppress glycerol release (used as an index of lipolysis) was emphasized in presence of stimulated lipolysis. Concentration of 1 ng/ml somatostatin-14 (0.625 nM) and somatostatin-28 (0.312 nM) was found to inhibit completely the glycerol release induced by concentrations of glucagon up to 2 ng/ml (0.58 nM). The percentage of inhibition was dose-dependent. The antilipolytic effect of somatostatin-14 was also observed during ACTH and aminophylline-stimulated lipolysis. Among the mechanisms which could account for the inhibition, a possible competitive effect of somatostatin-14 with 125I-labelled glucagon binding to adipocyte membranes was excluded. The small inhibiting effect of somatostatin-14 on glycerol release prompted by dibutyryl cyclic AMP, together with the significant inhibiting effect on aminophylline-stimulated lipolysis argued for a reduction of cyclic AMP accumulation. The increase of cyclic AMP levels induced by glucagon was substantially reduced in presence of somatostatin-14. It was concluded that in chicken adipocytes somatostatin inhibited the rate of lipolysis and that reduction on cyclic AMP could be responsible, at least in part, for the antilipolytic effect.  相似文献   

5.
6.
The effects of glucagon and glucagon-like peptide-1 (GLP-1) on the secretory activity of rat adrenocortical cells have been investigated in vitro. Neither hormones affected basal or agonist-stimulated aldosterone secretion of dispersed rat zona glomerulosa cells or basal corticosterone production of zona fasciculata-reticularis (inner) cells. In contrast, glucagon and GLP-1 partially (40%) inhibited ACTH (10(-9) M)-enhanced corticosterone secretion of inner cells, maximal effective concentration being 10(-7) M. The effect of 10(-7) M glucagon or GPL-1 was suppressed by 10(-6) M Des-His1-[Glu9]-glucagon amide (glucagon-A) and exendin-4(3-39) (GPL-1-A), which are selective antagonists of glucagon and GLP-1 receptors, respectively. Glucagon and GLP-1 (10(-7) M) decreased by about 45-50% cyclic-AMP production by dispersed inner adrenocortical cells in response to ACTH (10(-9) M), but not to the adenylate cyclase activator forskolin (10(-5) M). Again this effect was blocked by 10(-6) M glucagon-A or GLP-1-A. The exposure of dispersed inner cells to 10(-7) M glucagon plus GLP-1 completely suppressed corticosterone response to ACTH (10(-9) M). However, they only partially inhibited (by about 65-70%) both corticosterone response to forskolin (10(-5) M) or dibutyryl-cyclic-AMP (10(-5) M) and ACTH (10(-9) M)-enhanced cyclic-AMP production. Quantitative HPLC showed that 10(-7) M glucagon or GLP-1 did not affect ACTH-stimulated pregnenolone production, evoked a slight rise in progesterone and 11-deoxycorticosterone release, and markedly reduced (by about 55%) corticosterone secretion of dispersed inner adrenocortical cells. In light of these findings the following conclusion are drawn: (i) glucagon and GLP-1, via the activation of specific receptors, inhibit glucocorticoid response of rat adrenal cortex to ACTH; and (ii) the mechanism underlying the effect of glucagon and GLP-1 is probably two-fold, and involves both the inhibition of the ACTH-induced activation of adenylate cyclase and the impairment of the late steps of glucocorticoid synthesis.  相似文献   

7.
The effects of age and cellularity on lipolysis have been investigated in isolated epididymal fat cells from both Swiss albino mice and Sprague-Dawley rats. No significant lipolytic response to glucagon could be demonstrated with adipocytes from either young or old mice, while glycerol output was increased by this hormone with fat cells from young rats. Larger adipocytes from older mice showed significantly greater isoproterenol-stimulated lipolysis than those from younger animals if the glycerol output was expressed on a per cell basis. However, the lipolytic response per cell appeared to be equivalent in young and old rat adipocytes with either isoproterenol or ACTH-(1-24). In a complete aging study, relationships between body weight, epididymal fat pad weight and cellularity were examined covering the life span of the mouse. ACTH-(1-24)- and dibutyryl cyclic AMP-stimulated lipolysis increased with age and cell size but fell at senescence when adipocyte size diminished. Although an effect of aging per se cannot be ruled out with the experimental techniques used in the present study, a dominant influence of adipocyte size on the lipolytic process was demonstrated.  相似文献   

8.
The effects of glucagon, gastric inhibitory peptide (GIP) and somatostatin on the generation of cyclic AMP have been studied under basal and histamine- or secretin-stimulated conditions in tubular gastric glands isolated by means of EDTA from the rat fundus and antrum. Four types of cell could be identified by electron microscopy; namely, parietal, mucous, peptic and some endocrine cells with a good morphological preservation of the cellular topography as seen in the intact mucosa. Immunoreactive somatostatin was found in antral glands (210 +/- 16 ng/g cell, wet wt., n = 9) as well as in fundic glands, but in smaller concentration (50 +/- 8 ng/g cell, wet wt., n = 9). (1) In rat fundic glands, glucagon, in supraphysiologic doses (3 . 10(-9) -5 . 10(-7) M), raised cyclic AMP levels 46 times above the basal. At maximally effective doses, combination of glucagon plus histamine was not additive whereas glucagon and secretin stimulations resulted in an additive response. Somatostatin (10(-10) -10(-7) M) inhibited both glucagon- and histamine-induced cyclic AMP production, whereas cimetidine specifically blocked the histaminergic stimulation. (2) In the same conditions, 10(-6)M glucagon produced a marginal effect (4-fold increase) in rat antrum, whereas GIP (10(-9) -10(-6)M) was unable to induce a significant rise of cyclic AMP production in either fundic or antral glands, or to prevent cyclic AMP production stimulated by histamine. (3) The present data do not support the view that circulating glucagon or GIP may regulate gastric secretion directly by a cyclic AMP-dependent mechanism in rat gastric glands and raise the possibility that gastric somatostatin may be the final mediator of the inhibitory actions of these hormones on acid secretion. (4) It is proposed that pancreatic glucagon acts through a receptor-cyclic AMP system which is specific for the bioactive peptide enteroglucagon ('oxyntomodulin'), probably in rat parietal cells.  相似文献   

9.
Adipocytes were prepared by collagenase digestion of rat epididymal adipose tissue and incubated for 5, 15 or 30 minutes in Krebs-Ringer bicarbonate buffer containing albumin (40 mg/ml), glucose (1 mg/ml) and epinephrine. Calcium ion was present in some incubations at concentration of 2.5 mM and omitted from others; media with no added calcium contained 1.0 mM EGTA thereby producing a final calcium concentration of less than 10(-7) M. Glycerol release and accumulation of cyclic AMP were measured. Basal lipolysis and cell cyclic AMP levels were increased slightly but not significantly when adipocytes were incubated in calcium free media. Lipolysis could be activated with epinephrine in the absence of calcium but the sensitivity of the lipolytic response was greatly reduced; however, the maximum lipolytic response to epinephrine was not decreased in calcium free media. Similarly, incubation of adipocytes in calcium free media resulted in decreased accumulation of cyclic AMP in response to epinephrine but only when sub-maximum concentrations of the catecholamine were present. Varying the extracellular calcium concentration showed that a concentration of at least 10(-5) M was optimal for epinephrine activation of lipolysis. These observations are considered in accord with the view that activation of adenylate cyclase is facilitated by calcium ion.  相似文献   

10.
Lipid turnover and deposition is under the control of developmental, nutritional, metabolic and neuroendocrine influences. The aim of the current investigations was focused on the study of the involvement of leptin and neuropeptide Y in lipid mobilization. The lipolytic rate was assessed through glycerol release after incubation with leptin and NPY at concentrations ranging from 10(-6) to 10(-12) M in isolated adipocytes obtained from female rats. The presence of leptin at concentrations of 10(-12) to 10(-7) M in the incubation medium of isolated fat cells significantly increased (p < 0.0001) glycerol release, except at the concentration of 10(-11) M, where the increase was (p < 0.01) as compared to the basal lipolytic activity. On the other hand, isolated fat cells of Wistar rats bathed in 10(-10) to 10(-6) M concentrations of NPY demonstrated a statistically significant decrease (p < 0.0001) in glycerol release. At equimolar concentrations of leptin and NPY (10(-12) to 10(-6) M) the observed lipolytic activity is comparable to the basal lipolytic activity, except at a concentration of 10(-9) M where upon a significant increase in lipolysis is observed. A further increase in the equimolar concentrations, beyond 10(-9) M results in a return to the basal lipolytic activity. Summing up, new evidence suggests that NPY and leptin may interact in a homeostatic loop to regulate body-fat mass and energy balance not only at the central nervous system level, but also directly at the adipocyte level.  相似文献   

11.
The truncated form of glucagon-like peptide-1 (TGLP-1, or proglucagon 78-108), secreted by the mammalian intestine, has potent pharmacological activities, stimulating insulin release and inhibiting gastric acid secretion. We have characterized high-affinity receptors for this peptide in rat isolated fundic glands. Scatchard analysis of binding studies using mono-125I-TGLP-1(7-36) amide as tracer showed a single class of binding site of Kd (4.4 +/- (SE) .08) x 10(-10) M, with a tissue concentration of 1.0 +/- 0.1 fmol sites/microgram DNA. Whole GLP-1 was approximately 700 times less potent in displacing tracer, while human GLP-2 and pancreatic glucagon produced no significant displacement at concentrations up to 10(-6) M. The data support a physiological role for TGLP-1 in the regulation of gastric acid secretion.  相似文献   

12.
Insulin-mediated antilipolysis in permeabilized rat adipocytes   总被引:2,自引:0,他引:2  
Elucidating the mechanism by which insulin inhibits lipolysis has been hampered by the unavailability of a broken cell preparation in which the intact cell responses to the hormone could be duplicated. Here we report, using digitonin-permeabilized rat adipocytes, that physiological concentrations of insulin inhibit cyclic AMP-activated lipolysis despite the absence of cytosolic and plasma membrane integrity. Cyclic AMP (1.0 mM) maximally activates lipolysis in permeabilized adipocytes greater than 10-fold. Insulin inhibits this activation in a biphasic manner with maximum inhibition of 59 +/- 8% (N = 7) at 10(-9) M. At the submaximal concentrations of cyclic AMP (1.0 to 10 microM), insulin (10(-9) M) inhibits lipolysis 80 to 90%. Additionally, the antilipolytic effect of insulin is rapid (3 min) and it is specific, with the relatively inactive desoctapeptide analogue of insulin being three orders of magnitude less inhibitory than native insulin. In contrast to permeabilized cells, intact cells demonstrate only a small lipolytic response to cyclic AMP which is insensitive to insulin. These findings suggest the following about insulin's antilipolytic effects: 1) an intact cell is not required; 2) the intracellular mechanism of action does not require physiological concentrations of the freely diffusible cytosolic components; and 3) a site of insulin action independent of adenylate cyclase may play a major role.  相似文献   

13.
Desensitization of lipolysis was induced in isolated rat adipocytes by incubation with isoproterenol 10?5M or ACTH 250 mU/ml for two and three hours, respectively. Those cells desensitized with isoproterenol were restimulated with either isoproterenol 10?7M or ACTH 6 mU/ml and those cells desensitized with ACTH were restimulated with isoproterenol 10?7M. Lipolysis was quantitated by the release of cyclic AMP and glycerol. No effect on either homologous or heterologous desensitization was observed when either cycloheximide 2 μg/ml or puromycin 10?4M was included in the incubation media during the induction of desensitization. These findings support the conclusion that protein synthesis plays no role in the desensitization of lipolysis in the isolated rat adipocyte.  相似文献   

14.
Vasoactive intestinal peptide (VIP) has been shown to increase cyclic AMP content in isolated epithelial cells of rat ventral prostate. The stimulatory effect of VIP was dependent on time and temperature and was potentiated by a phosphodiesterase inhibitor. At 15 degrees C, the response occurred in the 1 X 10(-10)-10(-7)M range of VIP concentrations. Half-maximal stimulation of cellular cyclic AMP was obtained at 1.4 nM and maximal stimulation (3-fold basal level) at about 100 nM VIP. Chicken VIP and porcine secretin were agonists of porcine VIP but exhibited a 2-times higher and a 170-times lower potency, respectively. A high concentration (1 X 10(-6)M) of glucagon, somatostatin, neurotensin, substance P, Met-enkephalin or Leu-enkephalin did not modify cAMP levels. The finding of a VIP-stimulated cAMP system in rat prostatic epithelial cells together with the previous characterization of high-affinity receptors for VIP in the same cell preparation, as well as the presence of VIP-containing neurones innervating the male genitourinary tract, strongly suggest that VIP may be involved in prostatic growth regulation and function.  相似文献   

15.
1. Plasma glucose, glycerol, free fatty acids and total lipid content of the white adipose tissue were measured in euthermic and hibernating jerboa. 2. During hibernation, plasma glucose and glycerol were low compared to the euthermic animals, whereas there was no obvious difference in plasma free fatty acids. The white adipose tissue lipid content was strongly reduced in the hibernating state. 3. The effect of lipolytic hormones (norepinephrine and glucagon) and antilipolytic hormone (insulin) on in vitro glycerol release by adipose tissue isolated from hibernating or euthermic jerboa has been studied. 4. The white adipose tissue from hibernating jerboa presented a higher sensitivity to norepinephrine and glucagon than that of euthermic jerboa; insulin did not modify either basal glycerol release or lipolysis induced by the two lipolytic hormones at low temperatures (7 degrees C) and during the rewarming (from 7 degrees C to 37 degrees C) of the tissue slices. 5. These results suggested that white adipose tissue constitutes an important source of substrates derived from lipolysis during hibernation.  相似文献   

16.
Gastric somatostatin release from the isolated rat stomach was studied using a perfusion technique. Somatostatin released from the isolated perfused rat stomach was found to be identical in molecular size and immunoreactively with synthetic somatostatin. Infusion of glucagon (10?7 M) caused biphasic increase of gastric somatostatin release. Gastric somatostatin release was also stimulated by infusion of theophylline (10?3 M) and dibutyryl cyclic AMP (10?3 M). These results indicate the possible involvement of adenylate cyclase-cyclic AMP system in the regulatory mechanism of gastric somatostatin release.  相似文献   

17.
Role of phosphodiesterase in glucagon resistance of large adipocytes   总被引:3,自引:0,他引:3  
The role of phosphodiesterase in glucagon resistance of large adipocytes was investigated. A comparison was made of phosphodiesterase activities of homogenates prepared from isolated small (mean diameter approximately 45 micro m) and large (mean diameter approximately 78 micro m) adipocytes, using various concentrations (5 x 10(-4) to 1 x 10(-7) M) of 3',5'-cAMP. Kinetic analyses revealed two distinct catalytic activities (high and low affinities) in both cell types; however, the activities of both high- and low-affinity enzymes were significantly elevated in large adipocytes. Lipolysis was measured in isolated adipocytes in the presence of different concentrations (0.1-0.6 mM) of the phosphodiesterase inhibitor aminophylline. Large adipocytes were less responsive to low levels of methylxanthine, suggesting that greater amounts of phosphodiesterase must be inhibited before lipolysis can be stimulated. To evaluate the influence of phosphodiesterase during glucagon-stimulated lipolysis, small and large adipocytes were incubated with a maximally effective concentration of glucagon (1.5 x 10(-6) M) in combination with various concentrations (0.1-0.6 mM) of aminophylline. Although the glucagon effect was potentiated in both cell types, the maximum lipolytic response of large adipocytes (at 0.4 mM aminophylline) was approximately 36% lower than that observed in small adipocytes (at 0.2 mM aminophylline). This reduction correlates closely with the decreased glucagon binding present in large cells; therefore, it appears that the glucagon-resistant state is adequately explained by elevations in phosphodiesterase levels and diminished glucagon-cell association.  相似文献   

18.
Objective: Our goal was to evaluate the presence and lipolytic impact of the extracellular cyclic adenosine monophosphate (AMP)–adenosine pathway in adipose tissue. Research Methods and Procedures: Sixteen miniature Yucatan swine (Sus scrofa) were used for these in vitro and in situ experiments. Four microdialysis probes were implanted into subcutaneous adipose tissue and perfused at 2 μL/min with Ringer's solution containing no addition, varying levels of cyclic AMP, 10 μM isoproterenol, or 10 μM isoproterenol plus 1 mM α,β‐methylene adenosine 5′‐diphosphate (AMPCP), a 5′‐nucleotidase inhibitor. Dialysate was assayed for AMP, adenosine, inosine, hypoxanthine, and glycerol. Freshly isolated adipocytes were incubated with buffer, 1 μM isoproterenol, or 1 μM isoproterenol plus 0.1 mM AMPCP, and extracellular levels of AMP, adenosine, inosine, hypoxanthine, and glycerol were measured. Results: Perfusion of adipose tissue with exogenous cyclic AMP caused a significant increase in AMP and adenosine appearance. Perfusion with AMPCP, in the presence or absence of isoproterenol, significantly increased the levels of AMP and glycerol, whereas it significantly reduced the level of adenosine and its metabolites. However, the AMPCP‐provoked increase in lipolysis observed in situ and in vitro was not temporally associated with a decrease in adenosine. Discussion: These data suggest the existence of a cyclic AMP—adenosine pathway in adipocytes and adipose tissue. The role of this pathway in the regulation of lipolysis remains to be clarified.  相似文献   

19.
The lipolytic response of isolated adipocytes from genetic obese (C57/BL/64 ob/ob) and lean (C57BL/6J +/?) mice to ACTH-(1-24), isoproterenol and glucagon has been studied. The mean cell idameter of adipocytes form ob/ob mice was approximately twice that of lean controls. The adipocytes from obese mice contained on the average approximately six times the amount of triacylglycerol present in the smaller lean mouse adipocyte. Lipolysis was calculated both on a per cell basis (10(5) cells) and per mu mole of triacylglycerol and when expressed on a cell number basis, the larger adipocytes from obese mice showed an ACTH-(1-24) stimulated glycerol release which was quantitatively similar to that of smaller adipocytes from lean mice. When expressed per mu mole of triacylglycerol, the smaller cells from lean animals appeared to be dramatically more responsive to either isoproterenol or ACTH-(1-24). On either basis, ACTH-(1-24) stimulated glycerol release from obese mouse cells was greater than the isoproterenol response. The obese mouse of adipocyte showed selective loss of response to isoproterenol compared to its lean control.  相似文献   

20.
1. The effects of secretin and pancreozymin-C-octapeptide and phosphodiesterase inhibitors on the concentration of adenosine 3',5'-cyclic monophosphate (cyclic AMP) and on the release of enzymes from rat pancreas have been studied. 2. In determininging cyclic AMP by means of the saturation assay of Brown et al. ((1971) Biochem. J. 121, 561-563) it is found essential to purify the pancreatic tissue extract by ion-exchange chromatography prior to the assay. 3. Injection of synthetic secretin or pancreozymin-C-octapeptide in anaesthetized rats in a secretory active dose (0.1 nmol) has no effect on the pancreatic cyclic AMP level. 4. Incubation for up to 10 min of pancreatic slices in Krebs-Ringer bicarbonate glucose medium containing 10(-2) M theophylline as phosphodiesterase inhibitor does not result in an increase of the cyclic AMP level. With 10(-2) M 1-methyl-3-isobutylxanthine as phosphodiesterase inhibitor the level is more than doubled after the first min of incubation and remains constant thereafter. 5. Addition of 3-10(-7) M secretin to slices incubated in the presence of 10(-2) M theophylline causes 84% increase of the cyclic AMP level above control, whereas the addition of 3-10(-7) M pancreozymin-C-octapeptide has no significant effect. In the presence of 10(-2) M 1-methyl-3-isobutylxanthine the latter hormone causes significant increases of up to 34% above control during 10 min of incubation. Secretin in this condition augments the cyclic AMP level by up to 296% above control during a 10 min incubation period. Addition of secretin and pancreozymin-C-octapeptide together has no greater effect than of secretin alone. 6. A broken cell fraction of rat pancreas contains adenylate cyclase activity which can be stimulated to 457 and 600% above the basal activity by 3-10(-7) M pancreozymin-C-octapeptide and secretin, respectively. Incubation of pancreatic slices with either hormone has no effect on the cyclic AMP phosphodiesterase activity in the homogenate of these slices. 7. Pancreozymin-C-octapeptide, dibutyryl cyclic AMP, 1-methyl-3-isobutylxanthine and carbamylcholine cause an elevated release of chymotrypsin from pancreatic slices incubated for 2 h in Krebs-Ringer bicarbonate medium, containing 10 mM glucose, while secretin, cyclic AMP and butyric acid have no significant effect. The release of the cytoplasmic enzyme lactate dehydrogenase is also elevated by dibutyryl cyclic AMP, 1-methyl-3-isobutylxanthine and carbamylcholine, but not significantly by pancreozymin-C-octapeptide. 8. The results support the role of cyclic AMP in the action of secretin, and do not exclude a mediating function of this nucleotide in the actions of pancreozymin in rat pancreas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号