首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
The occurrence and distribution of muscle spindles was studied in histochemically and conventionally stained serial cross sections of 6-week-old and adult rat masticatory and suprahyoid muscles. Spindles were present in moderate to large numbers in jaw closers, but they were absent in jaw openers and two of four muscles of an accessory suprahyoid group. In jaw closers, 67% or more of the total spindle population was concentrated relatively distant from the temporomandibular joint, in muscle portions which contained large numbers of extrafusal fibers reacting strongly for oxidative enzymes. Because of their location, spindles in these portions should be stretched more and, subsequently, should respond with a greater afferent discharge at any given muscle length than spindles situated nearer to the joint. Spindles in jaw closers, especially the medial pterygoid and deep masseter, often occurred in clusters and complex forms near the terminal branching of intramuscular nerve trunks. No such concentrations were seen in the two muscles of the accessory suprahyoid group that had spindles. The association in jaw closers of spindles with extrafusal fibers high in oxidative enzyme activity is consistent with the view that spindles are the sensory component of a reflex system that recruits these fibers for finely-graded contractions in response to small internal length-changes of the muscle (Botterman et al., '78); however, in jaw openers and two muscles of the accessory suprahyoid group, the absence of spindles, coupled with the presence of large populations of extrafusal fibers high in oxidative enzyme activity, is not easily reconciled with this concept.  相似文献   

2.
Role of nerve and muscle factors in the development of rat muscle spindles   总被引:2,自引:0,他引:2  
The soleus muscles of fetal rats were examined by electron microscopy to determine whether the early differentiation of muscle spindles is dependent upon sensory innervation, motor innervation, or both. Simple unencapsulated afferent-muscle contacts were observed on the primary myotubes at 17 and 18 days of gestation. Spindles, encapsulations of muscle fibers innervated by afferents, could be recognized early on day 18 of gestation. The full complement of spindles in the soleus muscle was present at day 19, in the region of the neuromuscular hilum. More afferents innervated spindles at days 18 and 19 of gestation than at subsequent developmental stages, or in adult rats; hence, competition for available myotubes may exist among afferents early in development. Some of the myotubes that gave rise to the first intrafusal (bag2) fiber had been innervated by skeletomotor (alpha) axons prior to their incorporation into spindles. However, encapsulated intrafusal fibers received no motor innervation until fusimotor (gamma) axons innervated spindles 3 days after the arrival of afferents and formation of spindles, at day 20. The second (bag1) intrafusal fiber was already formed when gamma axons arrived. Thus, the assembly of bag1 and bag2 intrafusal fibers occurs in the presence of sensory but not gamma motor innervation. However, transient innervation of future bag2 fibers by alpha axons suggests that both sensory and alpha motor neurons may influence the initial stages of bag2 fiber assembly. The confinement of nascent spindles to a localized region of the developing muscle and the limited number of spindles in developing muscles in spite of an abundance of afferents raise the possibility that afferents interact with a special population of undifferentiated myotubes to form intrafusal fibers.  相似文献   

3.
J Kucera  J M Walro 《Histochemistry》1988,90(2):151-160
Muscle spindles were either deafferented or deefferented by selectively severing the sensory or motor nerve supply to neonatal soleus muscles of rats at a time when spindles are formed but when intrafusal muscle fibers are structurally and immunocytochemically immature. Experimental muscles were excised two months after nerve section. Control and experimental spindles were examined using monoclonal antibodies specific for myosin heavy chains of slow-tonic (ALD58) and fast-twitch (MF30) chicken muscles. Only intrafusal fibers bound these antibodies in intact soleus muscles. The deefferented spindles exhibited a pattern of ALD58 and MF30 binding similar to that of normal adult intrafusal fibers, whereas deafferented intrafusal fibers were unreactive with the two antibodies. Thus intact sensory innervation is essential for myosin heavy chain expression in intrafusal muscle fibers during postnatal development of rat spindles.  相似文献   

4.
Summary Muscle spindles were either deafferented or deefferented by selectively severing the sensory or motor nerve supply to neonatal soleus muscles of rats at a time when spindles are formed but when intrafusal muscle fibers are structurally and immunocytochemically immature. Experimental muscles wereexcised two months after nerve section. Control and experimental spindles were examined using monoclonal antibodies specific for myosin heavy chains of slow-tonic (ALD58) and fast-twitch (MF30) chicken muscles. Only intrafusal fibers bound these antibodies in intact soleus muscles. The deefferented spindles exhibited a pattern of ALD58 and MF30 binding similar to that of normal adult intrafusal fibers, whereas deafferented intrafusal fibers were unreactive with the two antibodies. Thus intact sensory innervation is essential for myosin heavy chain expression in intrafusal muscle fibers during postnatal development of rat spindles.  相似文献   

5.
Features of the nerve supply and the encapsulated fibers of muscle spindles were assessed in grafted and normal extensor digitorum longus (EDL) muscles of rats by analysis of serial 10-microns frozen transverse sections stained for enzymes which delineated motor and sensory endings, oxidative capacity and muscle fiber type. The number of fibers was significantly more variable, and branched fibers were more frequently observed in regenerated spindles than in control spindles. Forty-eight percent of regenerated spindles received sensory innervation. Spindles reinnervated by afferents had a larger periaxial space than did spindles which were not reinnervated by afferents. Regenerated fibers innervated by afferents had small cross-sectional areas, equatorial regions with myofibrils restricted to the periphery of fibers, unpredictable patterns of nonuniform and nonreversible staining along the length of the fiber for 'myofibrillar' adenosine triphosphatase (mATPase) after acid and alkaline preincubation. In contrast, regenerated fibers devoid of sensory innervation resembled extrafusal fibers in that they usually exhibited myofibrils throughout the length of the fiber, no central aggregations of myonuclei, uniform staining for mATPase and a reversal of staining for mATPase after preincubation in an acid or alkaline medium. Approximately thirty percent of encapsulated fibers devoid of sensory innervation stained analogous to a type I extrafusal fiber, a pattern of staining never observed in intrafusal fibers of normal spindles. Groups of encapsulated fibers all exhibiting this pattern of staining reflect that either these fibers may have been innervated by collaterals of skeletomotor axons that originally innervated type I extrafusal fibers or that fibers innervated by only fusimotor neurons express patterns of staining for mATPase similar to extrafusal fibers in the absence of sensory innervation. Sensory innervation may also influence the reestablishment of multiple sites of motor endings on regenerated intrafusal fibers. Those regenerated fibers innervated by afferents had more motor endings than did regenerated fibers devoid of sensory innervation. Differences in size, morphology, and patterns of staining for mATPase and numbers of motor endings between fibers innervated by afferents and fibers devoid of sensory innervation reflect that afferents can influence the differentiation of muscle cells and the reestablishment of motor innervation other than during the late prenatal/early postnatal period when muscle spindles form and differentiate in rats.  相似文献   

6.
J Kucera 《Histochemistry》1982,76(3):315-328
Over 150 complete and 139 incomplete single muscle spindles were examined in serial transverse sections of cat tenuissimus muscles in search for spindles lacking one of the two types of nuclear bag intrafusal fiber. Several histochemical reactions were used to type the intrafusal muscle fibers and assess the spindle motor and sensory innervation. One complete spindle lacked a bag1 fiber, and another spindle lacked a bag2 fiber. Several incomplete spindles also lacked bag1 fibers. In addition, ten double tandem spindles contained one capsular unit each that lacked the bag1 fiber, and one triple tandem spindle had two such capsules. All one-bag-fiber spindles had primary sensory innervation, but none had secondary sensory innervation. Their motor innervation was similar to that of the usual two-bag-fiber spindles in the number and disposition of intrafusal motor endings. It is unclear whether the one-bag fiber spindles, either single or tandem-linked, are products of an aberrant spindle development or represent a true anatomical and functional subcategory of the cat muscle spindle.  相似文献   

7.
The occurrence of muscle spindles was studied in the masseter muscle of rabbits by light-microscopy of whole muscle sections. The distribution of the spindles appeared to be heterogeneous. Most spindles lay in the anterior/deep and mid-parts of the masseter. The lateral/superficial part contained only a few muscle spindles. The distribution of the spindles is correlated to the distribution of slow twitch (type I) extrafusal fibres. This means that spindles, like type I fibres might be involved in the control of fine movements and posture. Spindle density and type I fibre density increase with distance from the temporomandibular joint. This could mean that spindles are involved in controlling bite force.  相似文献   

8.
Summary Cat tenuissmus muscles were deprived of motor nerve supply for three months by sectioning of the appropriate ventral spinal roots. Muscle spindles were located in the chronically de-efferented muscles and examined histochemically in serial transverse sections. Staining for nicotinamide adenine dinucleotide tetrazolium reductase showed that the spindle sensory innervation was preserved. The de-efferented intrafusal muscle fibers retained their differential staining with the reaction for myosin adenosine triphosphatase. However, all cholinesterase-active areas that are normally found along nuclear bag and nuclear chain intrafusal fibers demonstrated loss of the enzyme activity in the chronically de-efferented spindles. It is concluded that all histochemically demonstrable cholinesterase activity within the cat muscle spindle is dependent upon the continuous presence of motor innervation.  相似文献   

9.
We describe the expression and distribution patterns of nestin, desmin and vimentin in intact and regenerating muscle spindles of the rat hind limb skeletal muscles. Regeneration was induced by intramuscular isotransplantation of extensor digitorum longus (EDL) or soleus muscles from 15-day-old rats into the EDL muscle of adult female inbred Lewis rats. The host muscles with grafts were excised after 7-, 16-, 21- and 29-day survival and immunohistochemically stained. Nestin expression in intact spindles in host muscles was restricted to Schwann cells of sensory and motor nerves. In transplanted muscles, however, nestin expression was also found in regenerating “spindle fibers”, 7 and 16 days after grafting. From the 21st day onwards, the regenerated spindle fibers were devoid of nestin immunoreactivity. Desmin was detected in spindle fibers at all developmental stages in regenerating as well as in intact spindles. Vimentin was expressed in cells of the outer and inner capsules of all muscle spindles and in newly formed myoblasts and myotubes of regenerating spindles 7 days after grafting. Our results show that the expression pattern of these intermediate filaments in regenerating spindle fibers corresponds to that found in regenerating extrafusal fibers, which supports our earlier suggestion that they resemble small-diameter extrafusal fibers.  相似文献   

10.
Summary Over 150 complete and 139 incomplete single muscle spindles were examined in serial transverse sections of cat tenuissimus muscles in search for spindles lacking one of the two types of nuclear bag intrafusal fiber. Several histochemical reactions were used to type the intrafusal muscle fibers and assess the spindle motor and sensory innervation. One complete spindle lacked a bag1 fiber, and another spindle lacked a bag2 fiber. Several incomplete spindles also lacked bag1 fibers. In addition, ten double tandem spindles contained one capsular unit each that lacked the bag1 fiber, and one triple tandem spindle had two such capsules. All one-bag-fiber spindles had primary sensory innervation, but none had secondary sensory innervation. Their motor innervation was similar to that of the usual two-bag-fiber spindles in the number and disposition of intrafusal motor endings. It is unclear whether the one-bag fiber spindles, either single or tandem-linked, are products of an aberrant spindle development or represent a true anatomical and functional subcategory of the cat muscle spindle.  相似文献   

11.
J Kucera 《Histochemistry》1983,79(3):457-476
Over 300 complete and incomplete cat muscle spindles were examined in serial transverse sections of tenuissimus muscles in search of spindles with more than two nuclear bag intrafusal muscle fibers. Several histochemical and histological stains were used to identify the intrafusal fibers and assess their motor and sensory innervation. About 13% of the spindles contained either three or four bag fibers rather than the usual two. Every multiple-bag-fiber spindle possessed at least one nuclear bag1 and one nuclear bag2 fiber. The supernumerary bag fibers were either another bag1 and/or bag2 fiber, or a mixed bag fiber. The extra bag fibers had the usual morphologic and histochemical properties of cat nuclear bag fibers. All multiple-bag spindles received primary sensory innervation, and most had secondary sensory endings in addition. Their motor pattern was similar in the number, appearance and disposition of intrafusal motor endings to that of the usual two-bag-fiber spindles. Bag fibers of the same kind shared motor nerve supply in three multiple-bag spindles in which tracings of individual motor axons were obtained histologically. It is unclear whether any functional advantage is conveyed to a muscle spindle by its having more than one bag1 and one bag2 fiber.  相似文献   

12.
Innervation of regenerated spindles in muscle grafts of the rat   总被引:1,自引:0,他引:1  
Summary Features of the nerve supply and the encapsulated fibers of muscle spindles were assessed in grafted and normal extensor digitorum longus (EDL) muscles of rats by analysis of serial 10-m frozen transverse sections stained for enzymes which delineated motor and sensory endings, oxidative capacity and muscle fiber type.The number of fibers was significantly more variable, and branched fibers were more frequently observed in regenerated spindles than in control spindles. Forty-eight percent of regenerated spindles received sensory innervation. Spindles reinnervated by afferents had a larger periaxial space than did spindles which were not reinnervated by afferents. Regenerated fibers innervated by afferents had small cross-sectional areas, equatorial regions with myofi-brils restricted to the periphery of fibers, unpredictable patterns of nonuniform and nonreversible staining along the length of the fiber for myofibrillar adenosine triphosphatase (mATPase) after acid and alkaline preincubation. In contrast, regenerated fibers devoid of sensory innervation resembled extrafusal fibers in that they usually exhibited myofibrils throughout the length of the fiber, no central aggregations of myonuclei, uniform staining for mATPase and a reversal of staining for mATPase after preincubation in an acid or alkaline medium. Approximately thirty percent of encapsulated fibers devoid of sensory innervation stained analogous to a type I extrafusal fiber, a pattern of staining never observed in intrafusal fibers of normal spindles. Groups of encapsulated fibers all exhibiting this pattern of staining reflect that either these fibers may have been innervated by collaterals of skeletomotor axons that originally innervated type I extrafusal fibers or that fibers innervated by only fusimotor neurons express patterns of staining for mATPase similar to extrafusal fibers in the absence of sensory innervation. Sensory innervation may also influence the reestablishment, of multiple sites of motor endings on regenerated intrafusal fibers. Those regenerated fibers innervated by afferents had more motor endings than did regenerated fibers devoid of sensory innervation.Differences in size, morphology, and patterns of staining for mATPase and numbers of motor endings between fibers innervated by afferents and fibers devoid of sensory innervation reflect that afferents can influence the differentiation of muscle cells and the reestablishment of motor innervation other than during the late prenatal/early postnatal period when muscle spindles form and differentiate in rats.  相似文献   

13.
The chronology of development of spindle neural elements was examined by electron microscopy in fetal and neonatal rats. The three types of intrafusal muscle fiber of spindles from the soleus muscle acquired sensory and motor innervation in the same sequence as they formed--bag2, bag1, and chain. Both the primary and secondary afferents contacted developing spindles before day 20 of gestation. Sensory endings were present on myoblasts, myotubes, and myofibers in all intrafusal bundles regardless of age. The basic features of the sensory innervation--first-order branching of the parent axon, separation of the primary and secondary sensory regions, and location of both primary and secondary endings beneath the basal lamina of the intrafusal fibers--were all established by the fourth postnatal day. Cross-terminals, sensory terminals shared by more than one intrafusal fiber, were more numerous at all developmental stages than in mature spindles. No afferents to immature spindles were supernumerary, and no sensory axons appeared to retract from terminations on intrafusal fibers. The earliest motor axons contacted spindles on the 20th day of gestation or shortly afterward. More motor axons supplied the immature spindles, and a greater number of axon terminals were visible at immature intrafusal motor endings than in adult spindles; hence, retraction of supernumerary motor axons accompanies maturation of the fusimotor system analogous to that observed during the maturation of the skeletomotor system. Motor endings were observed only on the relatively mature myofibers; intrafusal myoblasts and myotubes lacked motor innervation in all age groups. This independence of the early stages of intrafusal fiber assembly from motor innervation may reflect a special inherent myogenic potential of intrafusal myotubes or may stem from the innervation of spindles by sensory axons.  相似文献   

14.
Sensory and motor fibers of peripheral nerves were irreversibly destroyed in fetal rats by administering beta bungarotoxin (BTX) on embryonic day 16 or 17, after assembly of primary myotubes, but before the formation of muscle spindles. Soleus muscles of toxin-treated fetuses and their untreated littermates were removed just prior to birth and were examined by light microscopy of serial transverse sections for the presence of spindles and immunocytochemical expression of several isoforms of myosin heavy chains (MHC). Untreated muscles exhibited numerous spindles that were innervated by branches of intramuscular nerves and contained muscle fibers expressing a slow-tonic MHC isoform characteristic of the intrafusal but not extrafusal fibers. Toxin-treated muscles were devoid of intramuscular nerve bundles and perineurial structures. Encapsulations of muscle fibers resembling spindles were absent and no myotubes expressed the slow-tonic MHC isoform associated with intrafusal fibers in beta BTX-treated muscles. Thus, the assembly of muscle spindles, formation of the spindle capsule, and transformation of undifferentiated myotubes into the intrafusal fibers that contain spindle-specific myosin isoforms all depend on the presence of innervation in prenatal rat muscles.  相似文献   

15.
The structure and innervation of muscle fibres were studied in external intercostal muscles and the streight muscle of the abdomen in 24--26-week human fetuses. The diameter of most spindles was shown to be within the range of 50--70 mkm, while in the streight muscle of the abdomen it could reach 100 mkm. In the external intercostal muscles the spindles, as a rule, were longer (300-500 mkm) than in the streight muscle of the abdomen (100--300 mkm) which was likely due to special functioning of the spindles in rhythmically working muscles. According to sensory innervation all the spindles may be divided into 3 main types: simple, intermediate and complex. In the external intercostal muscles there occur 3 types of spindles, while in the streight muscle of the abdomen there are spindles of a complex type.  相似文献   

16.
Intrafusal muscle fibres in adult muscle spindles differ in their myosin composition. After selective motor denervation intrafusal muscle fibres develop mature ultrastructural characteristics. In order to evaluate the role of fusimotor innervation on the maturation of the myosin composition of intrafusal muscle fibres we have examined with immunohistochemical techniques i) the postnatal development of muscle spindles in new-born rats and in 7-21 day old rats; ii) muscle spindles in the EDL of 21-day-old rats de-efferented at birth. For the characterization of myosins in intrafusal fibres we used three myosin antisera: antipectoral myosin, antiheart myosin and antiheart myosin adsorbed with muscle powder from the soleus muscle of guinea pig. We show in this study that during development intrafusal fibres change immunoreactivity and that in the absence of motor innervation bag fibres do not fully develop the myosin characteristics of control spindles. We conclude that the maturation of bag1 and bag2 fibres apparently requires next to the inductive influence of sensory axon terminals the presence and activity of fusimotor axons.  相似文献   

17.
The effects of easily chewable diets and unilateral extraction of upper molars on the masseter muscle were studied in developing mice. A liquid diet requiring no mastication suppressed the development of the masseter muscles more than a fine-grained diet, and extraction of unilateral upper molars also caused inhibition of muscle development. Moreover, both unilateral extraction of upper molars and a liquid diet had an additive effect on the suppression of the postnatal development of the masseter muscle, and bilateral suppression of the development of the masseter muscle was induced following unilateral extraction of upper molars. These findings suggest that the sensory input from the sensory endings in the periodontal ligament may also play an important role in the postnatal development of the masseter muscle and that there may be some crossing pathways to convey the sensory input coming from the side of the extracted upper molars to the contralateral motor neurons via the interneuronal circuits.  相似文献   

18.
The effect of lidocaine-HCl on muscle spindles in the masseter muscle of developing mice was investigated. Repeated injections of mice with anesthetic in the short term decreased the diameters of primary endings, intrafusal muscle fibers and outer capsules in the equatorial regions of muscle spindles, and caused a drop in the succinic dehydrogenase activity in intrafusal muscle fibers of the muscle spindles. In addition, the diameters did not recover to the control value even after about 10 weeks following cessation of anesthetic treatment. Thus, the present results suggest that repeated use of lidocaine-HCl in developing animals may cause dysfunction of the skeletal muscles.  相似文献   

19.
Summary Intrafusal muscle fibres in adult muscle spindles differ in their myosin composition. After selective motor denervation intrafusal muscle fibres develop mature ultrastructural characteristics. In order to evaluate the role of fusimotor innervation on the maturation of the myosin composition of intrafusal muscle fibres we have examined with immunohistochemical techniques i) the postnatal development of muscle spindles in new-born rats and in 7–21 day old rats; ii) muscle spindles in the EDL of 21-day-old rats de-efferented at birth. For the characterization of myosins in intrafusal fibres we used three myosin antisera: antipectoral myosin, antiheart myosin and antiheart myosin adsorbed with muscle powder from the soleus muscle of guinea pig. We show in this study that during development intrafusal fibres change immunoreactivity and that in the absence of motor innervation bag fibres do not fully develop the myosin characteristics of control spindles. We conclude that the maturation of bag1 and bag2 fibres apparently requires next to the inductive influence of sensory axon terminals the presence and activity of fusimotor axons.  相似文献   

20.
In order to evaluate the effects of fusimotor elimination on the expression of myosin heavy chain (MHC) proteins in intrafusal fibres, we compared the muscle spindles in hind limb muscles of 3- to 6-week-old rats de-efferented at birth with those of their litter-mate controls. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal MHC isoforms, against synaptophysin, the neurofilament 68 kD subunit and laminin. We found that de-efferented intrafusal fibres differentiated, as in normal spindles, into nuclear bag and bag fibres both containing predominantly slow MHC, and nuclear chain fibres that contained fast and neonatal MHC. In both de-efferented and control intrafusal fibres the same MHCs were stained; the degree and extent of staining, however, varied. Both types of de-efferented bag fibres displayed a high content of slow tonic and slow twitch MHC along most of the fibre length, in contrast to the prominent regional variation in control bag fibres. In their encapsulated regions, the de-efferented bag fibres were more similar to each other in their reactivity to anti-fast twitch and anti-neonatal MHC antibodies than the control bag fibres. In these aspects they resembled more closely the bag fibres of newborn rats. The differences might be due to an arrest of "specialization" in the regional expression of the different MHC isoforms. Chain fibres developed MHC patterns identical to those of control spindles with all the antibodies used, even though they differentiated from the beginning in the absence of motor innervation. The structural differentiation of the capsule and sensory innervation in de-efferented muscle spindles, as shown by anti-laminin, anti-synaptophysin and anti-neurofilament staining, did not differ from the controls. We conclude, in agreement with previous studies, that the sensory innervation plays a key role in inducing and supporting the differentiation of intrafusal fibres and the specific expression of their MHC. However, we also show that motor innervation and/or muscle function seem to be necessary for the diversity in the expression and distribution of different slow and fast MHC isoforms in the bag and bag fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号